quantum/10_krisi_3qubits_game.py
2020-03-27 19:48:18 +01:00

137 lines
4.3 KiB
Python

import random
from collections import defaultdict
import numpy as np
from lib import State, b_phi_p, b_phi_m, b_psi_p, b_psi_m, s, generate_bins
def test_krisi_measurement_2():
CASE_IDENTICAL = "identical"
CASE_ORTHOGONAL = "orthogonal"
def perform_exp(case):
# produce angles with uniform distribution on the sphere
t = round(np.random.uniform(0, 1), 10)
theta0 = np.arccos(1 - 2 * t)
phi0 = round(np.random.uniform(0, 2 * np.pi), 10)
# rotate the 0th qubit in (theta, phi)
q0 = State.from_bloch_angles(theta0, phi0)
# rotate the 1st qubit depending on the case we are exploring...
if case == CASE_IDENTICAL:
# ... for identical we are rotating the 1st qubit the same angles as
# the 0th
theta1, phi1 = theta0, phi0
else:
# for orthogonal we rotate the 1st qubit in 90 degrees
# orthogonal to the first
theta1, phi1 = theta0 + np.pi, phi0
q1 = State.from_bloch_angles(theta1, phi1)
# Measure in the Bell's basis
st = State(q0 * q1)
meas = st.measure(basis=[b_phi_p, b_phi_m, b_psi_p, b_psi_m])
return meas
correct = 0
cases = defaultdict(int)
results = defaultdict(int)
for i in range(1000):
case = random.choice([CASE_IDENTICAL, CASE_ORTHOGONAL])
cases[case] += 1
result = perform_exp(case=case)
results[result] += 1
if result == '11':
guess = CASE_ORTHOGONAL
assert guess == case
else:
guess = CASE_IDENTICAL
if guess == case:
correct += 1
print("Correct: {}".format(correct))
# print("Results: {}".format(results))
# print("Cases: {}".format(cases))
def test_krisi_measurement_3():
CASE_ID_ID = "id_id"
CASE_ID_ORT = "id_ort"
CASE_ORT_ID = "ort_id"
CASE_ORT_ORT = "ort_ort"
beta = 0
b_0 = State(1 / np.sqrt(2) * (s("|100>") - s("|010>")))
b_1 = State(1 / np.sqrt(2) * (s("|011>") - s("|101>")))
basis = [
s("|000>"),
State(np.cos(beta) * b_0 + np.sin(beta) * s("|001>")),
State(-np.sin(beta) * b_0 + np.cos(beta) * s("|001>")),
b_0,
b_1,
State(np.cos(beta) * b_1 + np.sin(beta) * s("|001>")),
State(-np.sin(beta) * b_1 + np.cos(beta) * s("|001>")),
s("|111>"),
]
def perform_exp(case):
# produce angles with uniform distribution on the sphere
t = round(np.random.uniform(0, 1), 10)
theta0 = np.arccos(1 - 2 * t)
phi0 = round(np.random.uniform(0, 2 * np.pi), 10)
# rotate the 0th qubit in (theta, phi)
q0 = State.from_bloch_angles(theta0, phi0)
# rotate the 1st qubit depending on the case we are exploring...
if case == CASE_ID_ID:
theta1, phi1 = theta0, phi0
theta2, phi2 = theta0, phi0
elif case == CASE_ID_ORT:
theta1, phi1 = theta0, phi0
theta2, phi2 = theta0 + np.pi, phi0
elif case == CASE_ORT_ID:
theta1, phi1 = theta0 + np.pi, phi0
theta2, phi2 = theta0, phi0
else:
# CASE_ORT_ORT
theta1, phi1 = theta0 + np.pi, phi0
theta2, phi2 = theta0 + np.pi, phi0
q1 = State.from_bloch_angles(theta1, phi1)
q2 = State.from_bloch_angles(theta2, phi2)
# Measure in the arbitrary basis
st = State(q0 * q1 * q2)
meas = st.measure(basis=basis)
return meas
def krisi_3_format_results(results):
all_pos = generate_bins(8)
print("Results:")
for case, rv in results.items():
print("{}:".format(case))
print(" raw : {}".format(sorted(rv.items())))
case_total = sum(rv.values())
print(" total: {}".format(case_total))
for pos in all_pos:
value = rv.get(pos, 0)
percent = value / case_total
print(" {} : {:3d} ({:.2f}%)".format(pos, value, percent))
results = defaultdict(lambda: defaultdict(int))
for i in range(1000):
case = random.choice([CASE_ID_ID, CASE_ID_ORT, CASE_ORT_ID, CASE_ORT_ORT])
result = perform_exp(case=case)
results[case][result] += 1
krisi_3_format_results(results)
if __name__ == "__main__":
# test_krisi_measurement_2()
test_krisi_measurement_3()