import random from collections import defaultdict import numpy as np from lib import State, b_phi_p, b_phi_m, b_psi_p, b_psi_m, s, generate_bins def test_krisi_measurement_2(): CASE_IDENTICAL = "identical" CASE_ORTHOGONAL = "orthogonal" def perform_exp(case): # produce angles with uniform distribution on the sphere t = round(np.random.uniform(0, 1), 10) theta0 = np.arccos(1 - 2 * t) phi0 = round(np.random.uniform(0, 2 * np.pi), 10) # rotate the 0th qubit in (theta, phi) q0 = State.from_bloch_angles(theta0, phi0) # rotate the 1st qubit depending on the case we are exploring... if case == CASE_IDENTICAL: # ... for identical we are rotating the 1st qubit the same angles as # the 0th theta1, phi1 = theta0, phi0 else: # for orthogonal we rotate the 1st qubit in 90 degrees # orthogonal to the first theta1, phi1 = theta0 + np.pi, phi0 q1 = State.from_bloch_angles(theta1, phi1) # Measure in the Bell's basis st = State(q0 * q1) meas = st.measure(basis=[b_phi_p, b_phi_m, b_psi_p, b_psi_m]) return meas correct = 0 cases = defaultdict(int) results = defaultdict(int) for i in range(1000): case = random.choice([CASE_IDENTICAL, CASE_ORTHOGONAL]) cases[case] += 1 result = perform_exp(case=case) results[result] += 1 if result == '11': guess = CASE_ORTHOGONAL assert guess == case else: guess = CASE_IDENTICAL if guess == case: correct += 1 print("Correct: {}".format(correct)) # print("Results: {}".format(results)) # print("Cases: {}".format(cases)) def test_krisi_measurement_3(): CASE_ID_ID = "id_id" CASE_ID_ORT = "id_ort" CASE_ORT_ID = "ort_id" CASE_ORT_ORT = "ort_ort" beta = 0 b_0 = State(1 / np.sqrt(2) * (s("|100>") - s("|010>"))) b_1 = State(1 / np.sqrt(2) * (s("|011>") - s("|101>"))) basis = [ s("|000>"), State(np.cos(beta) * b_0 + np.sin(beta) * s("|001>")), State(-np.sin(beta) * b_0 + np.cos(beta) * s("|001>")), b_0, b_1, State(np.cos(beta) * b_1 + np.sin(beta) * s("|001>")), State(-np.sin(beta) * b_1 + np.cos(beta) * s("|001>")), s("|111>"), ] def perform_exp(case): # produce angles with uniform distribution on the sphere t = round(np.random.uniform(0, 1), 10) theta0 = np.arccos(1 - 2 * t) phi0 = round(np.random.uniform(0, 2 * np.pi), 10) # rotate the 0th qubit in (theta, phi) q0 = State.from_bloch_angles(theta0, phi0) # rotate the 1st qubit depending on the case we are exploring... if case == CASE_ID_ID: theta1, phi1 = theta0, phi0 theta2, phi2 = theta0, phi0 elif case == CASE_ID_ORT: theta1, phi1 = theta0, phi0 theta2, phi2 = theta0 + np.pi, phi0 elif case == CASE_ORT_ID: theta1, phi1 = theta0 + np.pi, phi0 theta2, phi2 = theta0, phi0 else: # CASE_ORT_ORT theta1, phi1 = theta0 + np.pi, phi0 theta2, phi2 = theta0 + np.pi, phi0 q1 = State.from_bloch_angles(theta1, phi1) q2 = State.from_bloch_angles(theta2, phi2) # Measure in the arbitrary basis st = State(q0 * q1 * q2) meas = st.measure(basis=basis) return meas def krisi_3_format_results(results): all_pos = generate_bins(8) print("Results:") for case, rv in results.items(): print("{}:".format(case)) print(" raw : {}".format(sorted(rv.items()))) case_total = sum(rv.values()) print(" total: {}".format(case_total)) for pos in all_pos: value = rv.get(pos, 0) percent = value / case_total print(" {} : {:3d} ({:.2f}%)".format(pos, value, percent)) results = defaultdict(lambda: defaultdict(int)) for i in range(1000): case = random.choice([CASE_ID_ID, CASE_ID_ORT, CASE_ORT_ID, CASE_ORT_ORT]) result = perform_exp(case=case) results[case][result] += 1 krisi_3_format_results(results) if __name__ == "__main__": # test_krisi_measurement_2() test_krisi_measurement_3()