commented project_stats

This commit is contained in:
Daniel Tsvetkov 2020-03-16 20:03:08 +01:00
parent 2aecc7f673
commit e42b991fef

View File

@ -3,64 +3,54 @@ from qiskit import (
QuantumCircuit, QuantumCircuit,
execute, execute,
Aer) Aer)
from qiskit.visualization import plot_histogram, plot_bloch_vector
from matplotlib import pyplot as plt
from collections import defaultdict from collections import defaultdict
# Use Aer's qasm_simulator CASE_IDENTICAL = "identical"
simulator = Aer.get_backend('qasm_simulator') CASE_ORTHOGONAL = "orthogonal"
def create_bloch_vector(theta, phi): def perform_exp(iterations, case):
x = np.sin(theta) * np.cos(phi) # Use Aer's qasm_simulator
y = np.sin(theta) * np.sin(phi)
z = np.cos(theta)
return [x, y, z]
def perform_exp(iterations, case, draw=False):
simulator = Aer.get_backend('qasm_simulator') simulator = Aer.get_backend('qasm_simulator')
all_counts = defaultdict(int) all_counts = defaultdict(int)
for i in range(iterations): for i in range(iterations):
qc = QuantumCircuit(2, 2) qc = QuantumCircuit(2, 2)
# uniform distribution on the sphere # produce angles with uniform distribution on the sphere
t = round(np.random.uniform(0, 1), 10) t = round(np.random.uniform(0, 1), 10)
theta = np.arccos(1 - 2 * t) theta0 = np.arccos(1 - 2 * t)
phi = round(np.random.uniform(0, 2 * np.pi), 10) phi0 = round(np.random.uniform(0, 2 * np.pi), 10)
CASE_ANGLES = { # rotate the 0th qubit in (theta, phi)
'identical': (theta, phi), qc.r(theta0, phi0, 0)
'orthogonal': (theta + np.pi, phi)
}
qc.r(theta, phi, 0) # rotate the 1st qubit depending on the case we are exploring...
theta1, phi1 = CASE_ANGLES[case] if case == CASE_IDENTICAL:
# ... for identical we are rotating the 1st qubit the same angles as
# the 0th
theta1, phi1 = theta0, phi0
elif case == CASE_ORTHOGONAL:
# for orthogonal we rotate the 1st qubit in 90 degrees
# orthogonal to the first
theta1, phi1 = theta0 + np.pi, phi0
# perform the rotation of the 1st qubit
qc.r(theta1, phi1, 1) qc.r(theta1, phi1, 1)
# print(theta, phi, phi1)
if draw:
q0 = create_bloch_vector(theta, phi)
plot_bloch_vector(q0)
plt.show()
q1 = create_bloch_vector(theta1, phi1)
plot_bloch_vector(q1)
plt.show()
# Measure in the Bell's basis # Measure in the Bell's basis
qc.cx(0, 1) qc.cx(0, 1)
qc.h(0) qc.h(0)
qc.measure([0, 1], [0, 1])
# print(qc) # measuring maps the 0/1 qubit register to the 0/1 classical register
qc.measure([0, 1], [0, 1])
# execute the job # execute the job
job = execute(qc, simulator, shots=1) job = execute(qc, simulator, shots=1)
result = job.result() result = job.result()
counts = result.get_counts(qc) counts = result.get_counts(qc)
# update the counts of all experiments with the current run
for k, v in counts.items(): for k, v in counts.items():
all_counts[k] += v all_counts[k] += v
@ -71,7 +61,5 @@ def perform_exp(iterations, case, draw=False):
if __name__ == "__main__": if __name__ == "__main__":
# draw produces a Bloch sphere but does not work in this notebook perform_exp(iterations=100, case=CASE_IDENTICAL)
perform_exp(iterations=100, case=CASE_ORTHOGONAL)
perform_exp(iterations=100, case='identical', draw=False) # same state
perform_exp(iterations=100, case='orthogonal', draw=False) # different orthogonal states