From e42b991fefae462e0e4b239d91c1f9e6f8bfb192 Mon Sep 17 00:00:00 2001 From: Daniel Tsvetkov Date: Mon, 16 Mar 2020 20:03:08 +0100 Subject: [PATCH] commented project_stats --- 07_project_stats.py | 62 ++++++++++++++++++--------------------------- 1 file changed, 25 insertions(+), 37 deletions(-) diff --git a/07_project_stats.py b/07_project_stats.py index 9b78b25..b1981d9 100644 --- a/07_project_stats.py +++ b/07_project_stats.py @@ -3,64 +3,54 @@ from qiskit import ( QuantumCircuit, execute, Aer) -from qiskit.visualization import plot_histogram, plot_bloch_vector -from matplotlib import pyplot as plt from collections import defaultdict -# Use Aer's qasm_simulator -simulator = Aer.get_backend('qasm_simulator') +CASE_IDENTICAL = "identical" +CASE_ORTHOGONAL = "orthogonal" -def create_bloch_vector(theta, phi): - x = np.sin(theta) * np.cos(phi) - y = np.sin(theta) * np.sin(phi) - z = np.cos(theta) - return [x, y, z] - - -def perform_exp(iterations, case, draw=False): +def perform_exp(iterations, case): + # Use Aer's qasm_simulator simulator = Aer.get_backend('qasm_simulator') all_counts = defaultdict(int) for i in range(iterations): qc = QuantumCircuit(2, 2) - # uniform distribution on the sphere + # produce angles with uniform distribution on the sphere t = round(np.random.uniform(0, 1), 10) - theta = np.arccos(1 - 2 * t) - phi = round(np.random.uniform(0, 2 * np.pi), 10) + theta0 = np.arccos(1 - 2 * t) + phi0 = round(np.random.uniform(0, 2 * np.pi), 10) - CASE_ANGLES = { - 'identical': (theta, phi), - 'orthogonal': (theta + np.pi, phi) - } + # rotate the 0th qubit in (theta, phi) + qc.r(theta0, phi0, 0) - qc.r(theta, phi, 0) - theta1, phi1 = CASE_ANGLES[case] + # rotate the 1st qubit depending on the case we are exploring... + if case == CASE_IDENTICAL: + # ... for identical we are rotating the 1st qubit the same angles as + # the 0th + theta1, phi1 = theta0, phi0 + elif case == CASE_ORTHOGONAL: + # for orthogonal we rotate the 1st qubit in 90 degrees + # orthogonal to the first + theta1, phi1 = theta0 + np.pi, phi0 + + # perform the rotation of the 1st qubit qc.r(theta1, phi1, 1) - # print(theta, phi, phi1) - - if draw: - q0 = create_bloch_vector(theta, phi) - plot_bloch_vector(q0) - plt.show() - q1 = create_bloch_vector(theta1, phi1) - plot_bloch_vector(q1) - plt.show() - # Measure in the Bell's basis qc.cx(0, 1) qc.h(0) - qc.measure([0, 1], [0, 1]) - # print(qc) + # measuring maps the 0/1 qubit register to the 0/1 classical register + qc.measure([0, 1], [0, 1]) # execute the job job = execute(qc, simulator, shots=1) result = job.result() counts = result.get_counts(qc) + # update the counts of all experiments with the current run for k, v in counts.items(): all_counts[k] += v @@ -71,7 +61,5 @@ def perform_exp(iterations, case, draw=False): if __name__ == "__main__": - # draw produces a Bloch sphere but does not work in this notebook - - perform_exp(iterations=100, case='identical', draw=False) # same state - perform_exp(iterations=100, case='orthogonal', draw=False) # different orthogonal states + perform_exp(iterations=100, case=CASE_IDENTICAL) + perform_exp(iterations=100, case=CASE_ORTHOGONAL)