commented project_stats
This commit is contained in:
parent
2aecc7f673
commit
e42b991fef
@ -3,64 +3,54 @@ from qiskit import (
|
||||
QuantumCircuit,
|
||||
execute,
|
||||
Aer)
|
||||
from qiskit.visualization import plot_histogram, plot_bloch_vector
|
||||
from matplotlib import pyplot as plt
|
||||
from collections import defaultdict
|
||||
|
||||
# Use Aer's qasm_simulator
|
||||
simulator = Aer.get_backend('qasm_simulator')
|
||||
CASE_IDENTICAL = "identical"
|
||||
CASE_ORTHOGONAL = "orthogonal"
|
||||
|
||||
|
||||
def create_bloch_vector(theta, phi):
|
||||
x = np.sin(theta) * np.cos(phi)
|
||||
y = np.sin(theta) * np.sin(phi)
|
||||
z = np.cos(theta)
|
||||
return [x, y, z]
|
||||
|
||||
|
||||
def perform_exp(iterations, case, draw=False):
|
||||
def perform_exp(iterations, case):
|
||||
# Use Aer's qasm_simulator
|
||||
simulator = Aer.get_backend('qasm_simulator')
|
||||
all_counts = defaultdict(int)
|
||||
|
||||
for i in range(iterations):
|
||||
qc = QuantumCircuit(2, 2)
|
||||
|
||||
# uniform distribution on the sphere
|
||||
# produce angles with uniform distribution on the sphere
|
||||
t = round(np.random.uniform(0, 1), 10)
|
||||
theta = np.arccos(1 - 2 * t)
|
||||
phi = round(np.random.uniform(0, 2 * np.pi), 10)
|
||||
theta0 = np.arccos(1 - 2 * t)
|
||||
phi0 = round(np.random.uniform(0, 2 * np.pi), 10)
|
||||
|
||||
CASE_ANGLES = {
|
||||
'identical': (theta, phi),
|
||||
'orthogonal': (theta + np.pi, phi)
|
||||
}
|
||||
# rotate the 0th qubit in (theta, phi)
|
||||
qc.r(theta0, phi0, 0)
|
||||
|
||||
qc.r(theta, phi, 0)
|
||||
theta1, phi1 = CASE_ANGLES[case]
|
||||
# rotate the 1st qubit depending on the case we are exploring...
|
||||
if case == CASE_IDENTICAL:
|
||||
# ... for identical we are rotating the 1st qubit the same angles as
|
||||
# the 0th
|
||||
theta1, phi1 = theta0, phi0
|
||||
elif case == CASE_ORTHOGONAL:
|
||||
# for orthogonal we rotate the 1st qubit in 90 degrees
|
||||
# orthogonal to the first
|
||||
theta1, phi1 = theta0 + np.pi, phi0
|
||||
|
||||
# perform the rotation of the 1st qubit
|
||||
qc.r(theta1, phi1, 1)
|
||||
|
||||
# print(theta, phi, phi1)
|
||||
|
||||
if draw:
|
||||
q0 = create_bloch_vector(theta, phi)
|
||||
plot_bloch_vector(q0)
|
||||
plt.show()
|
||||
q1 = create_bloch_vector(theta1, phi1)
|
||||
plot_bloch_vector(q1)
|
||||
plt.show()
|
||||
|
||||
# Measure in the Bell's basis
|
||||
qc.cx(0, 1)
|
||||
qc.h(0)
|
||||
qc.measure([0, 1], [0, 1])
|
||||
|
||||
# print(qc)
|
||||
# measuring maps the 0/1 qubit register to the 0/1 classical register
|
||||
qc.measure([0, 1], [0, 1])
|
||||
|
||||
# execute the job
|
||||
job = execute(qc, simulator, shots=1)
|
||||
result = job.result()
|
||||
counts = result.get_counts(qc)
|
||||
|
||||
# update the counts of all experiments with the current run
|
||||
for k, v in counts.items():
|
||||
all_counts[k] += v
|
||||
|
||||
@ -71,7 +61,5 @@ def perform_exp(iterations, case, draw=False):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# draw produces a Bloch sphere but does not work in this notebook
|
||||
|
||||
perform_exp(iterations=100, case='identical', draw=False) # same state
|
||||
perform_exp(iterations=100, case='orthogonal', draw=False) # different orthogonal states
|
||||
perform_exp(iterations=100, case=CASE_IDENTICAL)
|
||||
perform_exp(iterations=100, case=CASE_ORTHOGONAL)
|
||||
|
Loading…
Reference in New Issue
Block a user