sequential measurements are memoized

This commit is contained in:
Daniel Tsvetkov 2020-03-29 10:03:00 +02:00
parent 09d9b78683
commit 08bce98b6d

43
lib.py
View File

@ -164,6 +164,7 @@ class State(Vector):
super().__init__(m, *args, **kwargs)
self.name = name
self.measurement_result = None
self.last_basis = None
# TODO: SHOULD WE NORMALIZE?
# if not self._is_normalized():
# raise TypeError("Not a normalized state vector")
@ -287,6 +288,7 @@ class State(Vector):
Measures in the computational basis.
Irreversable operation. Measuring again will result in the same result
TODO: Should we memoize per basis?
Currently it's memoized if the basis is the same
If it's measured twice, should it return the same state?
What about if measured twice but in different bases?
E.g. measure1 -> computation -> A
@ -297,15 +299,15 @@ class State(Vector):
random weighted?
:return: binary representation of the measured qubit (e.g. "011")
"""
# if self.measurement_result:
# return self.measurement_result
weights, m_ops = [], []
if not basis:
basis = []
for j in range(len(self)):
# Default is computational basis
e_j = self.get_computational_basis_vector(j)
m = MeasurementOperator.create_from_basis(e_j)
m_ops.append(m)
basis.append(State(e_j))
else:
assert len(basis) == len(self)
for i, e_j in enumerate(basis):
@ -314,6 +316,9 @@ class State(Vector):
assert e_j.is_orthogonal(basis[0])
m_ops.append(MeasurementOperator.create_from_basis(e_j))
if self.measurement_result and self.last_basis == basis:
return self.measurement_result
for m_op in m_ops:
prob = self.get_prob_from_measurement_op(m_op)
weights += [prob]
@ -327,13 +332,14 @@ class State(Vector):
# TODO: This may be wrong
# normalize the weights
weights = list(np.array(weights) / sum(weights))
# assert np.isclose(sum(weights), 1.0)
format_str = self.get_fmt_of_element()
choices = empty_choices + [format_str.format(i) for i in
range(len(weights))]
weights = empty_weights + weights
self.measurement_result = random.choices(choices, weights)[0]
self.last_basis = basis
return self.measurement_result
def measure_with_op(self, mo):
@ -841,7 +847,8 @@ T = lambda phi: Gate([[1, 0],
#
# Decomposed CNOT :
# reverse engineered from
# https://quantumcomputing.stackexchange.com/questions/4252/how-to-derive-the-cnot-matrix-for-a-3-qbit-system-where-the-control-target-qbi
# https://quantumcomputing.stackexchange.com/questions/4252/how-to-derive-the
# -cnot-matrix-for-a-3-qbit-system-where-the-control-target-qbi
#
# CNOT(q1, I, q2):
# |0><0| x I_2 x I_2 + |1><1| x I_2 x X
@ -890,7 +897,6 @@ SWAP = Gate([
CNOT.on(CNOT.on(CNOT.on(state, [x, y]), [y, x]), [x, y])
)
TOFF = Gate([
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
@ -1040,7 +1046,8 @@ def test_partials():
assert CNOT.on(CNOT.on(CNOT.on(s("|10>")), which_qbit=[1, 0])) == s("|01>")
# Test SWAP via 3 successive CNOTs, the 0<->2 are swapped
assert CNOT.on(CNOT.on(CNOT.on(s("|100>"), [0, 2]), [2, 0]), [0, 2]) == s("|001>")
assert CNOT.on(CNOT.on(CNOT.on(s("|100>"), [0, 2]), [2, 0]), [0, 2]) == s(
"|001>")
# apply on 0, 1 of 3qbit state
assert CNOT.on(s("|000>"), which_qbit=[0, 1]) == s("|000>")
@ -1085,6 +1092,28 @@ def test_partials():
assert TOFF.on(s("|10100>"), which_qbit=[0, 2, 4]) == s("|10101>")
def test_sequential_measurements():
st = H.on(s("|0>"))
meas1 = st.measure()
assert st.measurement_result is not None
assert st.last_basis == computational_basis
# Measuring more times should return the same result
for i in range(10):
meas2 = st.measure()
assert meas2 == meas1
# Measuring in different basis might not yield the same result
meas3 = st.measure(basis=plus_minus_basis)
assert st.measurement_result is not None
assert st.last_basis == plus_minus_basis
# But measuring more times should still return the same result
for i in range(10):
meas4 = st.measure(basis=plus_minus_basis)
assert meas4 == meas3
def test():
# Test properties of Hilbert vector space
# The four postulates of Quantum Mechanics
@ -1189,6 +1218,8 @@ def test():
# Test measurement operators
test_measurement_ops()
test_sequential_measurements()
# IV: Compositing | The state space of a composite physical system
# is the tensor product of the state spaces
# of the component physical systems.