decompositions for multi-qubit gates when partials are impossible

This commit is contained in:
Daniel Tsvetkov 2020-03-29 09:41:00 +02:00
parent 92ccea6469
commit 09d9b78683

91
lib.py
View File

@ -602,8 +602,8 @@ class HermitianMatrix(SquareMatrix):
class UnitaryOperator(LinearTransformation, UnitaryMatrix):
def __init__(self, m: ListOrNdarray, name: str = '', partials=None, *args,
**kwargs):
def __init__(self, m: ListOrNdarray, name: str = '', partials=None,
decomposition=None, *args, **kwargs):
"""UnitaryOperator inherits from both LinearTransformation and a
Unitary matrix
It is used to act on a State vector by defining the operator to be
@ -614,13 +614,15 @@ class UnitaryOperator(LinearTransformation, UnitaryMatrix):
the list is the Nth partial that is used, i.e. for the first - |0><0|,
for the second - |1><1|
"""
if np.shape(m) != (2, 2) and partials is None:
raise Exception("Please define partials in a non-single operator")
if np.shape(m) != (2, 2) and partials is None and decomposition is None:
raise Exception("Please define partials or decomposition in "
"a non-single operator")
UnitaryMatrix.__init__(self, m=m, *args, **kwargs)
LinearTransformation.__init__(self, m=m, func=self.operator_func, *args,
**kwargs)
self.name = name
self.partials = partials
self.decomposition = decomposition
def operator_func(self, other, which_qbit=None):
this_cols, other_rows = np.shape(self.m)[1], np.shape(other.m)[0]
@ -631,6 +633,8 @@ class UnitaryOperator(LinearTransformation, UnitaryMatrix):
"Please specify which_qubit to operate on".format(
this_cols, other_rows))
total_qbits = int(np.log2(other_rows))
if type(which_qbit) is list and len(which_qbit) == 1:
which_qbit = which_qbit[0]
if type(which_qbit) is int:
# single qubit-gate
assert this_cols == 2
@ -639,39 +643,40 @@ class UnitaryOperator(LinearTransformation, UnitaryMatrix):
range(total_qbits)]
new_m = np.prod(extended_m).m
elif type(which_qbit) is list:
# single or multiple qubit-gate
assert 1 <= len(which_qbit) <= total_qbits
assert len(which_qbit) == len(self.partials)
assert all([q < total_qbits for q in which_qbit])
this_gate_len = 2 ** (len(self.partials) - 1)
bins = generate_bins(this_gate_len)
extended_m, next_control = [[] for _ in bins], 0
partial_mapping = dict(zip(which_qbit, self.partials))
for qbit in range(total_qbits):
if qbit not in partial_mapping:
for i in range(this_gate_len):
extended_m[i].append(I)
else:
this_partial = partial_mapping[qbit]
# TODO: This works only with C_partial :(((
if this_partial == C_partial:
if self.decomposition:
return self.decomposition(other, *which_qbit)
else:
# single or multiple qubit-gate
assert 1 <= len(which_qbit) <= total_qbits
assert len(which_qbit) == len(self.partials)
assert all([q < total_qbits for q in which_qbit])
this_gate_len = 2 ** (len(self.partials) - 1)
bins = generate_bins(this_gate_len)
extended_m, next_control = [[] for _ in bins], 0
partial_mapping = dict(zip(which_qbit, self.partials))
for qbit in range(total_qbits):
if qbit not in partial_mapping:
for i in range(this_gate_len):
bin_dig = bins[i][next_control]
extended_m[i].append(
s("|" + bin_dig + "><" + bin_dig + "|"))
next_control += 1
else:
for i in range(this_gate_len - 1):
extended_m[i].append(I)
extended_m[-1].append(this_partial)
new_m = sum([np.prod(e).m for e in extended_m])
else:
this_partial = partial_mapping[qbit]
# TODO: This works only with C_partial :(((
if this_partial == C_partial:
for i in range(this_gate_len):
bin_dig = bins[i][next_control]
extended_m[i].append(
s("|" + bin_dig + "><" + bin_dig + "|"))
next_control += 1
else:
for i in range(this_gate_len - 1):
extended_m[i].append(I)
extended_m[-1].append(this_partial)
new_m = sum([np.prod(e).m for e in extended_m])
else:
raise Exception(
"which_qubit needs to be either an int of N-th qubit or list")
extended_op = UnitaryOperator(new_m, name=self.name,
partials=self.partials)
return State(np.dot(extended_op.m, other.m))
return State(np.dot(new_m, other.m))
def __repr__(self):
if self.name:
@ -836,8 +841,7 @@ T = lambda phi: Gate([[1, 0],
#
# Decomposed CNOT :
# reverse engineered from
# https://quantumcomputing.stackexchange.com/questions/4252/how-to-derive-the
# -cnot-matrix-for-a-3-qbit-system-where-the-control-target-qbi
# https://quantumcomputing.stackexchange.com/questions/4252/how-to-derive-the-cnot-matrix-for-a-3-qbit-system-where-the-control-target-qbi
#
# CNOT(q1, I, q2):
# |0><0| x I_2 x I_2 + |1><1| x I_2 x X
@ -874,13 +878,17 @@ CZ = Gate([
[0, 0, 0, -1],
], name="CZ", partials=[C_partial, z_partial])
# TODO: These are not the correct partials
# Can't do partials for SWAP, but can be decomposed
# SWAP is decomposed into three CNOTs where the second one is flipped
SWAP = Gate([
[1, 0, 0, 0],
[0, 0, 1, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
], name="SWAP", partials=[C_partial, C_partial])
], name="SWAP",
decomposition=lambda state, x, y:
CNOT.on(CNOT.on(CNOT.on(state, [x, y]), [y, x]), [x, y])
)
TOFF = Gate([
@ -1012,6 +1020,10 @@ def test_eigenstuff():
def test_partials():
# test single qbit state
assert X.on(s("|000>"), which_qbit=1) == s("|010>")
assert X.on(s("|000>"), which_qbit=[1]) == s("|010>")
# normal 2 qbit state
assert CNOT.on(s("|00>")) == s("|00>")
assert CNOT.on(s("|10>")) == s("|11>")
@ -1024,9 +1036,12 @@ def test_partials():
assert CNOT.on(s("|01>"), which_qbit=[1, 0]) == s("|11>")
assert CNOT.on(s("|001>"), which_qbit=[2, 0]) == s("|101>")
# Test SWAP via 3 successive CNOTs, the second is flipped
# Test SWAP via 3 successive CNOTs, the second CNOT is flipped
assert CNOT.on(CNOT.on(CNOT.on(s("|10>")), which_qbit=[1, 0])) == s("|01>")
# Test SWAP via 3 successive CNOTs, the 0<->2 are swapped
assert CNOT.on(CNOT.on(CNOT.on(s("|100>"), [0, 2]), [2, 0]), [0, 2]) == s("|001>")
# apply on 0, 1 of 3qbit state
assert CNOT.on(s("|000>"), which_qbit=[0, 1]) == s("|000>")
assert CNOT.on(s("|100>"), which_qbit=[0, 1]) == s("|110>")
@ -1048,8 +1063,8 @@ def test_partials():
# test SWAP gate
assert SWAP.on(s("|10>")) == s("|01>")
assert SWAP.on(s("|01>")) == s("|10>")
# TODO:
# assert SWAP.on(s("|001>"), which_qbit=[0, 2]) == s("|100>")
# Tests SWAP on far-away gates
assert SWAP.on(s("|001>"), which_qbit=[0, 2]) == s("|100>")
# test Toffoli gate
assert TOFF.on(s("|000>")) == s("|000>")