116 lines
2.8 KiB
Python
116 lines
2.8 KiB
Python
import numpy as np
|
|
|
|
# Raw matrixes to be used for initialization of qubits and gates
|
|
__0 = [[1],
|
|
[0]]
|
|
|
|
__1 = [[0],
|
|
[1]]
|
|
|
|
_I = [
|
|
[1, 0],
|
|
[0, 1],
|
|
]
|
|
|
|
_X = [
|
|
[0, 1],
|
|
[1, 0],
|
|
]
|
|
|
|
_Y = [
|
|
[0, complex(0, -1)],
|
|
[complex(0, 1), 0],
|
|
]
|
|
|
|
_Z = [
|
|
[1, 0],
|
|
[0, -1],
|
|
]
|
|
|
|
_H = [
|
|
[1 / np.sqrt(2), 1 / np.sqrt(2)],
|
|
[1 / np.sqrt(2), -1 / np.sqrt(2)]
|
|
]
|
|
|
|
_CNOT = [
|
|
[1, 0, 0, 0],
|
|
[0, 1, 0, 0],
|
|
[0, 0, 0, 1],
|
|
[0, 0, 1, 0],
|
|
]
|
|
|
|
|
|
class State(object):
|
|
"""Represents a quantum state"""
|
|
def __init__(self, matrix_state):
|
|
"""
|
|
Can be initialized with a matrix, e.g. for |0> this is [[0],[1]]
|
|
:param matrix_state: a matrix representing the quantum state
|
|
"""
|
|
self.matrix_state = np.array(matrix_state)
|
|
|
|
def __getitem__(self, item):
|
|
"""
|
|
Kind of hacky way to store a substate of an item for use in Gate operations
|
|
so that one can use state[0] and the encompassing operator can access this.
|
|
:param item:
|
|
:return:
|
|
"""
|
|
if item >= len(self):
|
|
raise IndexError
|
|
self.item = item
|
|
return self
|
|
|
|
def __len__(self):
|
|
return int(np.log2(self.matrix_state.shape[0]))
|
|
|
|
def __repr__(self):
|
|
return str(self.matrix_state)
|
|
|
|
|
|
def kron(_list):
|
|
"""Calculates a Kronicker product of a list of matrices
|
|
This is essentially a np.kron(*args) since np.kron takes (a,b)"""
|
|
if type(_list) != list or len(_list) <= 1:
|
|
return np.array([])
|
|
rv = np.array(_list[0])
|
|
for item in _list[1:]:
|
|
rv = np.kron(rv, item)
|
|
return rv
|
|
|
|
|
|
class Gate(State):
|
|
def on(self, other_state):
|
|
"""
|
|
Applies a gate operation on a state.
|
|
If applying to a substate, use the index of the substate, e.g. `H.on(bell[0])` will apply the Hadamard gate
|
|
on the 0th qubit of the `bell` state.
|
|
:param other_state: another state (e.g. `H.on(q1)` or a list of states (e.g. for `CNOT.on([q1, q2])`)
|
|
:return: the state after the application of the Gate
|
|
"""
|
|
this_state_m = self.matrix_state
|
|
if type(other_state) == list:
|
|
other_state = State(kron([e.matrix_state for e in other_state]))
|
|
other_state_m = other_state.matrix_state
|
|
if this_state_m.shape[1] != other_state_m.shape[0]:
|
|
# The two arrays are different sizes
|
|
# Use the Kronicker product of Identity with the state.item where
|
|
# state.item is the substate
|
|
larger_side = max(len(self), len(other_state))
|
|
_list = [this_state_m if i == other_state.item else _I for i in range(larger_side)]
|
|
this_state_m = kron(_list)
|
|
return State(this_state_m.dot(other_state_m))
|
|
|
|
|
|
class Qubit(State): ...
|
|
|
|
|
|
# List of gates
|
|
I = Gate(_I)
|
|
X = Gate(_X)
|
|
Y = Gate(_Y)
|
|
Z = Gate(_Z)
|
|
H = Gate(_H)
|
|
|
|
CNOT = Gate(_CNOT)
|