quantum/lib_q_computer.py
2019-12-04 18:03:46 +01:00

116 lines
2.8 KiB
Python

import numpy as np
# Raw matrixes to be used for initialization of qubits and gates
__0 = [[1],
[0]]
__1 = [[0],
[1]]
_I = [
[1, 0],
[0, 1],
]
_X = [
[0, 1],
[1, 0],
]
_Y = [
[0, complex(0, -1)],
[complex(0, 1), 0],
]
_Z = [
[1, 0],
[0, -1],
]
_H = [
[1 / np.sqrt(2), 1 / np.sqrt(2)],
[1 / np.sqrt(2), -1 / np.sqrt(2)]
]
_CNOT = [
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0],
]
class State(object):
"""Represents a quantum state"""
def __init__(self, matrix_state):
"""
Can be initialized with a matrix, e.g. for |0> this is [[0],[1]]
:param matrix_state: a matrix representing the quantum state
"""
self.matrix_state = np.array(matrix_state)
def __getitem__(self, item):
"""
Kind of hacky way to store a substate of an item for use in Gate operations
so that one can use state[0] and the encompassing operator can access this.
:param item:
:return:
"""
if item >= len(self):
raise IndexError
self.item = item
return self
def __len__(self):
return int(np.log2(self.matrix_state.shape[0]))
def __repr__(self):
return str(self.matrix_state)
def kron(_list):
"""Calculates a Kronicker product of a list of matrices
This is essentially a np.kron(*args) since np.kron takes (a,b)"""
if type(_list) != list or len(_list) <= 1:
return np.array([])
rv = np.array(_list[0])
for item in _list[1:]:
rv = np.kron(rv, item)
return rv
class Gate(State):
def on(self, other_state):
"""
Applies a gate operation on a state.
If applying to a substate, use the index of the substate, e.g. `H.on(bell[0])` will apply the Hadamard gate
on the 0th qubit of the `bell` state.
:param other_state: another state (e.g. `H.on(q1)` or a list of states (e.g. for `CNOT.on([q1, q2])`)
:return: the state after the application of the Gate
"""
this_state_m = self.matrix_state
if type(other_state) == list:
other_state = State(kron([e.matrix_state for e in other_state]))
other_state_m = other_state.matrix_state
if this_state_m.shape[1] != other_state_m.shape[0]:
# The two arrays are different sizes
# Use the Kronicker product of Identity with the state.item where
# state.item is the substate
larger_side = max(len(self), len(other_state))
_list = [this_state_m if i == other_state.item else _I for i in range(larger_side)]
this_state_m = kron(_list)
return State(this_state_m.dot(other_state_m))
class Qubit(State): ...
# List of gates
I = Gate(_I)
X = Gate(_X)
Y = Gate(_Y)
Z = Gate(_Z)
H = Gate(_H)
CNOT = Gate(_CNOT)