212 lines
5.5 KiB
Python
212 lines
5.5 KiB
Python
import random
|
|
|
|
import numpy as np
|
|
import pyximport
|
|
from numba import jit
|
|
|
|
pyximport.install()
|
|
from ckron import cythkrn
|
|
|
|
# Raw matrixes to be used for initialization of qubits and gates
|
|
|
|
# |0> and |1>
|
|
__0 = [[1.],
|
|
[0.]]
|
|
|
|
__1 = [[0.],
|
|
[1.]]
|
|
|
|
# |+> and |->
|
|
__p = [[1 / np.sqrt(2)],
|
|
[1 / np.sqrt(2)]]
|
|
__m = [[1 / np.sqrt(2)],
|
|
[-1 / np.sqrt(2)]]
|
|
|
|
# Gate/Operator raws
|
|
_I = [
|
|
[1, 0],
|
|
[0, 1],
|
|
]
|
|
|
|
_X = [
|
|
[0, 1],
|
|
[1, 0],
|
|
]
|
|
|
|
_Y = [
|
|
[0, complex(0, -1)],
|
|
[complex(0, 1), 0],
|
|
]
|
|
|
|
_Z = [
|
|
[1, 0],
|
|
[0, -1],
|
|
]
|
|
|
|
_H = [
|
|
[1 / np.sqrt(2), 1 / np.sqrt(2)],
|
|
[1 / np.sqrt(2), -1 / np.sqrt(2)]
|
|
]
|
|
|
|
_CNOT = [
|
|
[1, 0, 0, 0],
|
|
[0, 1, 0, 0],
|
|
[0, 0, 0, 1],
|
|
[0, 0, 1, 0],
|
|
]
|
|
|
|
|
|
class State(object):
|
|
"""Represents a quantum state"""
|
|
|
|
def __init__(self, matrix_state):
|
|
"""
|
|
Can be initialized with a matrix, e.g. for |0> this is [[0],[1]]
|
|
:param matrix_state: a matrix representing the quantum state
|
|
"""
|
|
self.matrix_state = np.array(matrix_state)
|
|
|
|
def __getitem__(self, item):
|
|
"""
|
|
Kind of hacky way to store a substate of an item for use in Gate
|
|
operations
|
|
so that one can use state[0] and the encompassing operator can access
|
|
this.
|
|
:param item:
|
|
:return:
|
|
"""
|
|
if item >= len(self):
|
|
raise IndexError
|
|
self.item = item
|
|
return self
|
|
|
|
def __len__(self):
|
|
return int(np.log2(self.matrix_state.shape[0]))
|
|
|
|
def __repr__(self):
|
|
return str(self.matrix_state)
|
|
|
|
def __eq__(self, other):
|
|
return np.array_equal(self.matrix_state, other.matrix_state)
|
|
|
|
def density_matrix(self):
|
|
return self.matrix_state.dot(np.transpose(self.matrix_state))
|
|
|
|
def measure_probability(self):
|
|
"""
|
|
In a qbit [a, b] normalized: |a|^2 + |b|^2 = 1
|
|
Probability of 0 is |a|^2 and 1 with prob |b|^2
|
|
|
|
:returns: tuple of probabilities to measure 0 or 1"""
|
|
return [np.abs(qbit[0]) ** 2 for qbit in self.matrix_state]
|
|
|
|
def measure(self):
|
|
"""
|
|
This gets a random choice of either 0 and 1 with weights
|
|
based on the probabilities of the qbit
|
|
|
|
:returns: classical bit based on qbit probabilities"""
|
|
weights = self.measure_probability()
|
|
format_str = "{:0" + str(int(np.ceil(np.log2(len(weights))))) + "b}"
|
|
choices = [format_str.format(i) for i in range(len(weights))]
|
|
return random.choices(choices, weights)[0]
|
|
|
|
def partial_measure(self):
|
|
"""
|
|
Say we have the state a|00> + b|01> + c|10> + d|11>.
|
|
Measuring \0> on q1:
|
|
|0>(a|0> + b|1>) + |1>(c|0> + d|1>) ->
|
|
|
|
We need to normalize for the other qubit: (a|0> + b|1>) / math.sqrt(|a|^2 + \b|^2)
|
|
:return:
|
|
"""
|
|
...
|
|
|
|
|
|
@jit()
|
|
def kron(_list):
|
|
"""Calculates a Kronicker product of a list of matrices
|
|
This is essentially a np.kron(*args) since np.kron takes (a,b)"""
|
|
if type(_list) != list or len(_list) <= 1:
|
|
return np.array([])
|
|
rv = np.array(_list[0])
|
|
for item in _list[1:]:
|
|
# rv = np.kron(rv, item)
|
|
# TODO: Further optimization with cython - but right now it takes a double only
|
|
rv = cythkrn.kron(rv, item)
|
|
return rv
|
|
|
|
|
|
class Gate(State):
|
|
def on(self, other_state):
|
|
"""
|
|
Applies a gate operation on a state.
|
|
If applying to a substate, use the index of the substate, e.g. `H.on(
|
|
bell[0])` will apply the Hadamard gate
|
|
on the 0th qubit of the `bell` state.
|
|
:param other_state: another state (e.g. `H.on(q1)` or a list of
|
|
states (e.g. for `CNOT.on([q1, q2])`)
|
|
:return: the state after the application of the Gate
|
|
"""
|
|
this_state_m = self.matrix_state
|
|
if type(other_state) == list:
|
|
other_state = State(kron([e.matrix_state for e in other_state]))
|
|
other_state_m = other_state.matrix_state
|
|
if this_state_m.shape[1] != other_state_m.shape[0]:
|
|
# The two arrays are different sizes
|
|
# Use the Kronicker product of Identity with the state.item where
|
|
# state.item is the substate
|
|
larger_side = max(len(self), len(other_state))
|
|
_list = [this_state_m if i == other_state.item else _I
|
|
for i in range(larger_side)]
|
|
this_state_m = kron(_list)
|
|
return State(this_state_m.dot(other_state_m))
|
|
|
|
|
|
class Qubit(State): ...
|
|
|
|
|
|
# List of gates
|
|
I = Gate(_I)
|
|
X = Gate(_X)
|
|
Y = Gate(_Y)
|
|
Z = Gate(_Z)
|
|
H = Gate(_H)
|
|
|
|
CNOT = Gate(_CNOT)
|
|
|
|
|
|
def run_qbit_tests():
|
|
# asserts are sets of tests to check if mathz workz
|
|
# initialize qubits
|
|
_0 = Qubit(__0)
|
|
_1 = Qubit(__1)
|
|
_p = Qubit(__p)
|
|
_m = Qubit(__m)
|
|
|
|
# Identity: verify that I|0> == |0> and I|1> == |0>
|
|
assert I.on(_0) == _0
|
|
assert I.on(_1) == _1
|
|
|
|
# Pauli X: verify that X|0> == |1> and X|1> == |0>
|
|
assert X.on(_0) == _1
|
|
assert X.on(_1) == _0
|
|
|
|
# measure probabilities in sigma_x of |0> and |1>
|
|
# using allclose since dealing with floats
|
|
assert np.allclose(_0.measure_probability(), (1.0, 0.0))
|
|
assert np.allclose(_1.measure_probability(), (0.0, 1.0))
|
|
|
|
# applying Hadamard puts the qbit in orthogonal +/- basis
|
|
assert np.array_equal(H.on(_0), _p)
|
|
assert np.array_equal(H.on(_1), _m)
|
|
|
|
# measure probabilities in sigma_x of |+> and |->
|
|
# using allclose since dealing with floats
|
|
assert np.allclose(_p.measure_probability(), (0.5, 0.5))
|
|
assert np.allclose(_m.measure_probability(), (0.5, 0.5))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_qbit_tests()
|