deep math understanding and following qm postulates

This commit is contained in:
Daniel Tsvetkov 2019-12-17 18:05:14 +01:00
parent 1b7abb604e
commit c8e03fc8b4
3 changed files with 305 additions and 1 deletions

View File

@ -111,6 +111,17 @@ class State(object):
choices = [format_str.format(i) for i in range(len(weights))] choices = [format_str.format(i) for i in range(len(weights))]
return random.choices(choices, weights)[0] return random.choices(choices, weights)[0]
def partial_measure(self):
"""
Say we have the state a|00> + b|01> + c|10> + d|11>.
Measuring \0> on q1:
|0>(a|0> + b|1>) + |1>(c|0> + d|1>) ->
We need to normalize for the other qubit: (a|0> + b|1>) / math.sqrt(|a|^2 + \b|^2)
:return:
"""
...
@jit() @jit()
def kron(_list): def kron(_list):

293
lib_q_computer_math.py Normal file
View File

@ -0,0 +1,293 @@
from __future__ import annotations
from typing import Union
import numpy as np
from numbers import Complex
from load_test import sizeof_fmt
ListOrNdarray = Union[list, np.ndarray]
class Matrix(object):
"""Represents a quantum state as a vector in Hilbert space"""
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
"""
Can be initialized with a matrix, e.g. for |0> this is [[0],[1]]
:param m: a matrix representing the quantum state
:param name: the name of the state (optional)
"""
if m is None:
self.m = np.array([])
elif type(m) is list:
self.m = np.array(m)
elif type(m) is np.ndarray:
self.m = m
else:
raise TypeError("m needs to be a list or ndarray type")
def __add__(self, other):
return other.__class__(self.m + other.m)
def __eq__(self, other):
if isinstance(other, Complex):
return bool(np.allclose(self.m, other))
return np.allclose(self.m, other.m)
def __mul_or_kron__(self, other):
"""
Multiplication with a number is Linear op;
with another state is a composition via the Kronecker/Tensor product
"""
if isinstance(other, Complex):
return self.__class__(self.m * other)
elif isinstance(other, Matrix):
return other.__class__(np.kron(self.m, other.m))
raise NotImplementedError
def __rmul__(self, other):
return self.__mul_or_kron__(other)
def __mul__(self, other):
return self.__mul_or_kron__(other)
def __or__(self, other):
"""Define inner product: <self|other>
"""
return other.__class__(np.dot(self._conjugate_transpose(), other.m))
def __len__(self):
return len(self.m)
def _conjugate_transpose(self):
return self.m.transpose().conjugate()
def _complex_conjugate(self):
return self.m.conjugate()
def conjugate_transpose(self):
return State(self._conjugate_transpose())
def complex_conjugate(self):
return State(self._complex_conjugate())
class State(Matrix):
def __init__(self, m: ListOrNdarray = None, name: str = '', *args, **kwargs):
"""An Operator turns one function into another"""
super().__init__(m)
self.name = name
def __repr__(self):
if self.name:
return '|{}>'.format(self.name)
return str(self.m)
def norm(self):
"""Norm/Length of the vector = sqrt(<self|self>)"""
return self.length()
def length(self):
"""Norm/Length of the vector = sqrt(<self|self>)"""
return np.sqrt((self | self).m).item(0)
def is_orthogonal(self, other):
"""If the inner (dot) product is zero, this vector is orthogonal to other"""
return self | other == 0
def measure(self, j):
"""pr(j) = |<e_j|self>|^2"""
# j_th basis vector
e_j = State([[1] if i == int(j) else [0] for i in range(len(self.m))])
return np.absolute((e_j | self).m.item(0)) ** 2
class Operator(object):
def __init__(self, func=None, *args, **kwargs):
"""An Operator turns one function into another"""
self.func = func
def on(self, *args, **kwargs):
return self(*args, **kwargs)
def __call__(self, *args, **kwargs):
return self.func(*args, **kwargs)
class UnitaryMatrix(Matrix):
def __init__(self, m: ListOrNdarray, *args, **kwargs):
"""Represents a Unitary matrix that satisfies UU+ = I"""
super().__init__(m, *args, **kwargs)
if not self._is_unitary():
raise TypeError("Not a Unitary matrix")
def _is_unitary(self):
"""Checks if the matrix is
1. square and
2. the product of itself with conjugate transpose is Identity UU+ = I"""
is_square = self.m.shape[0] == self.m.shape[1]
UU_ = np.dot(self._conjugate_transpose(), self.m)
I = np.eye(self.m.shape[0])
return is_square and np.isclose(UU_, I).all()
class UnitaryOperator(Operator, UnitaryMatrix):
def __init__(self, m: ListOrNdarray, name: str = '', *args, **kwargs):
"""UnitaryOperator inherits from both Operator and a Unitary matrix
It is used to act on a State vector by defining the operator to be the dot product"""
UnitaryMatrix.__init__(self, m=m, name=name, *args, **kwargs)
Operator.__init__(self, func=lambda other: State(np.dot(self.m, other.m)), *args, **kwargs)
def test():
_0 = State([[1], [0]], name='0')
_1 = State([[0], [1]], name='1')
_p = State([[1 / np.sqrt(2)], [1 / np.sqrt(2)]], name='+')
m = State([[1 / np.sqrt(2)], [-1 / np.sqrt(2)]], name='-')
# Test properties of Hilbert vector space
# The four postulates of Quantum Mechanics
# I: States | Associated to any physical system is a complex vector space
# known as the state space of the system. If the system is closed
# then the system is described completely by its state vector
# which is a unit vector in the space.
# Mathematically, this vector space is also a function space
assert _0 + _1 == _1 + _0 # commutativity of vector addition
assert _0 + (_1 + _p) == (_0 + _1) + _p # associativity of vector addition
assert 8 * (_0 + _1) == 8 * _0 + 8 * _1 # Linear when multiplying by constants
assert _0 | _0 == 1 # parallel have 1 product
assert _0 | _1 == 0 # orthogonal have 0 product
assert _0.is_orthogonal(_1)
assert _1 | (8 * _0) == 8 * (_1 | _0) # Inner product is linear multiplied by constants
assert _p | (_1 + _0) == (_p | _1) + (_p | _0) # Inner product is linear in superpos of vectors
assert np.isclose(_1.length(), 1.0) # all of the vector lengths are normalized
assert np.isclose(_0.length(), 1.0)
assert np.isclose(_p.length(), 1.0)
assert _0 | _1 == (_1 | _0).complex_conjugate() # non-commutative inner product
# II: Dynamics | The evolution of a closed system is described by a unitary transformation
#
# Operators turn one vector into another
# Pauli X gate flips the |0> to |1> and the |1> to |0>
# the times 2 operator should return the times two multiplication
_times_2 = Operator(lambda x: 2 * x)
assert _times_2.on(5) == 10
assert _times_2(5) == 10
X = UnitaryOperator([[0, 1],
[1, 0]])
assert X | _1 == _0
assert X | _0 == _1
# Test the Y Pauli operator with complex number literal notation
Y = UnitaryOperator([[0, -1j],
[1j, 0], ])
assert Y | _0 == State([[0],
[1j]])
assert Y | _1 == State([[-1j],
[0]])
# III: Measurement | A quantum measurement is described by an orthonormal basis |e_j>
# for state space. If the initial state of the system is |psi>
# then we get outcome j with probability pr(j) = |<e_j|psi>|^2
assert _0.measure(0) == 1 # Probability for |0> in 0 is 1
assert _0.measure(1) == 0 # Probability for |0> in 1 is 0
assert _1.measure(0) == 0 # Probability for |1> in 0 is 0
assert _1.measure(1) == 1 # Probability for |1> in 1 is 1
assert np.isclose(_p.measure(0), 0.5) # Probability for |+> in 0 is 0.5
assert np.isclose(_p.measure(1), 0.5) # Probability for |+> in 1 is 0.5
# IV: Compositing | tensor/kronecker product when composing
assert _0 * _0 == State([[1], [0], [0], [0]])
assert _0 * _1 == State([[0], [1], [0], [0]])
assert _1 * _0 == State([[0], [0], [1], [0]])
assert _1 * _1 == State([[0], [0], [0], [1]])
# CNOT applies a control qubit on a target.
# If the control is a |0>, target remains unchanged.
# If the control is a |1>, target is flipped.
CNOT = UnitaryOperator([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0], ])
assert CNOT.on(_0 * _0) == _0 * _0
assert CNOT.on(_0 * _1) == _0 * _1
assert CNOT.on(_1 * _0) == _1 * _1
assert CNOT.on(_1 * _1) == _1 * _0
# ALL FOUR NOW - Create a Bell state (I) that has H|0> (II), measures (III) and composition in CNOT (IV)
# Bell state
# First - create a superposition
H = UnitaryOperator([[1 / np.sqrt(2), 1 / np.sqrt(2)],
[1 / np.sqrt(2), -1 / np.sqrt(2)], ])
superpos = H | _0
assert superpos == _p
# Then CNOT the superposition with a |0> qubit
bell = CNOT | (superpos * _0)
assert bell == State([[1 / np.sqrt(2)],
[0.],
[0.],
[1 / np.sqrt(2)], ])
assert np.isclose(bell.measure(0b00), 0.5) # Probability for bell in 00 is 0.5
assert np.isclose(bell.measure(0b01), 0) # Probability for bell in 01 is 0.
assert np.isclose(bell.measure(0b10), 0) # Probability for bell in 10 is 0.
assert np.isclose(bell.measure(0b11), 0.5) # Probability for bell in 11 is 0.5
def naive_load_test(N):
import os
import psutil
import gc
from time import time
from sys import getsizeof
print("{:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10}".format(
"qbits",
"kron_len",
"mem_used",
"mem_per_q",
"getsizeof",
"getsiz/len",
"nbytes",
"nbytes/len",
"time"))
_0 = State([[1], [0]], name='0')
process = psutil.Process(os.getpid())
mem_init = process.memory_info().rss
for i in range(2, N + 1):
start = time()
m = _0
for _ in range(i):
m = m * _0
len_m = len(m)
elapsed = time() - start
mem_b = process.memory_info().rss - mem_init
print("{:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10}".format(
i,
len(m),
sizeof_fmt(mem_b),
sizeof_fmt(mem_b / len_m),
sizeof_fmt(getsizeof(m)),
sizeof_fmt(getsizeof(m) / len_m),
sizeof_fmt(m.m.nbytes),
sizeof_fmt(m.m.nbytes / len_m),
np.round(elapsed, 2)))
gc.collect()
if __name__ == "__main__":
naive_load_test(23)

View File

@ -25,7 +25,7 @@ def run_load_test(N=20):
(2**30 * 8 ) / 1024**3 = 8.0 (2**30 * 8 ) / 1024**3 = 8.0
Example run output with N=27 on 64GB machine **(without jit)** Example run output with N=27 on 64GB machine **(without jit, without cython optimizations)**
qbits kron_len mem_used mem_per_q getsizeof getsiz/len nbytes nbytes/len time qbits kron_len mem_used mem_per_q getsizeof getsiz/len nbytes nbytes/len time
2 4 0.0B 0.0B 144.0B 36.0B 32.0B 8.0B 0.0 2 4 0.0B 0.0B 144.0B 36.0B 32.0B 8.0B 0.0