linear operators
This commit is contained in:
parent
11ed1b44ac
commit
ba3be9b4ff
@ -113,6 +113,18 @@ class Matrix(object):
|
||||
return str(self.m)
|
||||
|
||||
|
||||
class HorizontalVector(Matrix):
|
||||
"""Horizontal vector is basically a list"""
|
||||
|
||||
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
|
||||
super().__init__(m, *args, **kwargs)
|
||||
if not self._is_vector():
|
||||
raise TypeError("Not a vector")
|
||||
|
||||
def _is_vector(self):
|
||||
return len(self.m.shape) == 1
|
||||
|
||||
|
||||
class Vector(Matrix):
|
||||
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
|
||||
super().__init__(m, *args, **kwargs)
|
||||
@ -337,38 +349,48 @@ def humanize(m):
|
||||
|
||||
|
||||
class Operator(object):
|
||||
def __init__(self, func=None, *args, **kwargs):
|
||||
def __init__(self, func: sp.Lambda, *args, **kwargs):
|
||||
"""An Operator turns one function into another"""
|
||||
self.func = func
|
||||
|
||||
def on(self, *args, **kwargs):
|
||||
return self(*args, **kwargs)
|
||||
def on(self, *args):
|
||||
return self(*args)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.func(*args, **kwargs)
|
||||
def __call__(self, *args):
|
||||
return self.func(*args)
|
||||
|
||||
|
||||
class LinearOperator(Operator):
|
||||
def __init__(self, func=None, *args, **kwargs):
|
||||
def __init__(self, func: sp.Lambda, *args, **kwargs):
|
||||
"""Linear operators satisfy f(x+y) = f(x) + f(y) and a*f(x) = f(a*x)"""
|
||||
super().__init__(func, *args, **kwargs)
|
||||
if not self._is_linear():
|
||||
raise TypeError("Not a linear operator")
|
||||
|
||||
def _is_linear(self):
|
||||
# TODO: How to verify if the func is linear?
|
||||
# in case of Unitary Operator, self.func is a lambda that takes a Matrix (assumes has .m component)
|
||||
# A function is (jointly) linear in a given set of variables
|
||||
# if all second-order derivatives are identically zero (including mixed ones).
|
||||
# https://stackoverflow.com/questions/36283548/check-if-an-equation-is-linear-for-a-specific-set-of-variables
|
||||
expr, vars_ = self.func.expr, self.func.variables
|
||||
for x in vars_:
|
||||
for y in vars_:
|
||||
try:
|
||||
if not sp.Eq(sp.diff(expr, x, y), 0):
|
||||
return False
|
||||
except TypeError:
|
||||
return False
|
||||
return True
|
||||
# a, b = sympy.symbols('a, b')
|
||||
# expr, vars_ = a+b, [a, b]
|
||||
# for x in vars_:
|
||||
# for y in vars_:
|
||||
# try:
|
||||
# if not sympy.Eq(sympy.diff(expr, x, y), 0):
|
||||
# return False
|
||||
# except TypeError:
|
||||
# return False
|
||||
# return True
|
||||
|
||||
|
||||
def test_linear_operator():
|
||||
# Operators turn one vector into another
|
||||
# the times 2 operator should return the times two multiplication
|
||||
_x = sp.Symbol('x')
|
||||
_times_2 = LinearOperator(sp.Lambda(_x, 2 * _x))
|
||||
assert _times_2.on(5) == 10
|
||||
assert _times_2(5) == 10
|
||||
|
||||
assert_raises(TypeError, "Not a linear operator", LinearOperator, sp.Lambda(_x, _x ** 2))
|
||||
|
||||
|
||||
class SquareMatrix(Matrix):
|
||||
@ -381,6 +403,39 @@ class SquareMatrix(Matrix):
|
||||
return self.m.shape[0] == self.m.shape[1]
|
||||
|
||||
|
||||
class LinearTransformation(LinearOperator, Matrix):
|
||||
def __init__(self, m: ListOrNdarray, func=None, name: str = '', *args, **kwargs):
|
||||
"""LinearTransformation (or linear map) inherits from both LinearOperator and a Matrix
|
||||
It is used to act on a State vector by defining the operator to be the dot product"""
|
||||
self.name = name
|
||||
Matrix.__init__(self, m=m, *args, **kwargs)
|
||||
self.func = func or self.operator_func
|
||||
LinearOperator.__init__(self, func=func, *args, **kwargs)
|
||||
|
||||
def _is_linear(self):
|
||||
# Every matrix transformation is a linear transformation
|
||||
# https://www.mathbootcamps.com/proof-every-matrix-transformation-is-a-linear-transformation/
|
||||
return True
|
||||
|
||||
def operator_func(self, other):
|
||||
return Vector(np.dot(self.m, other.m))
|
||||
|
||||
def get_eigens(self):
|
||||
""" Returns (eigenvalue, eigenvector)
|
||||
M|v> = λ|v> ->
|
||||
M :is the operator (self)
|
||||
|v> :is eigenstate of M
|
||||
λ :is the corresponding eigenvalue
|
||||
"""
|
||||
eigenvalues, eigenvectors = np.linalg.eig(self.m)
|
||||
rv = []
|
||||
for i in range(0, len(eigenvectors)):
|
||||
eigenvalue = eigenvalues[i]
|
||||
eigenvector = HorizontalVector(eigenvectors[:, i])
|
||||
rv.append((eigenvalue, eigenvector))
|
||||
return rv
|
||||
|
||||
|
||||
class UnitaryMatrix(SquareMatrix):
|
||||
def __init__(self, m: ListOrNdarray, *args, **kwargs):
|
||||
"""Represents a Unitary matrix that satisfies UU+ = I"""
|
||||
@ -407,13 +462,13 @@ class HermitianMatrix(SquareMatrix):
|
||||
return np.isclose(self.m, self._conjugate_transpose()).all()
|
||||
|
||||
|
||||
class UnitaryOperator(LinearOperator, UnitaryMatrix):
|
||||
class UnitaryOperator(LinearTransformation, UnitaryMatrix):
|
||||
def __init__(self, m: ListOrNdarray, name: str = '', *args, **kwargs):
|
||||
"""UnitaryOperator inherits from both LinearOperator and a Unitary matrix
|
||||
"""UnitaryOperator inherits from both LinearTransformation and a Unitary matrix
|
||||
It is used to act on a State vector by defining the operator to be the dot product"""
|
||||
self.name = name
|
||||
UnitaryMatrix.__init__(self, m=m, *args, **kwargs)
|
||||
LinearOperator.__init__(self, func=self.operator_func, *args, **kwargs)
|
||||
LinearTransformation.__init__(self, m=m, func=self.operator_func, *args, **kwargs)
|
||||
|
||||
def operator_func(self, other):
|
||||
return State(np.dot(self.m, other.m))
|
||||
@ -424,9 +479,9 @@ class UnitaryOperator(LinearOperator, UnitaryMatrix):
|
||||
return str(self.m)
|
||||
|
||||
|
||||
class HermitianOperator(LinearOperator, HermitianMatrix):
|
||||
class HermitianOperator(LinearTransformation, HermitianMatrix):
|
||||
def __init__(self, m: ListOrNdarray, name: str = '', *args, **kwargs):
|
||||
"""HermitianMatrix inherits from both LinearOperator and a Hermitian matrix
|
||||
"""HermitianMatrix inherits from both LinearTransformation and a Hermitian matrix
|
||||
It is used to act on a State vector by defining the operator to be the dot product"""
|
||||
self.name = name
|
||||
HermitianMatrix.__init__(self, m=m, *args, **kwargs)
|
||||
@ -596,6 +651,7 @@ def Rz(theta):
|
||||
[0, np.power(np.e, 1j * theta / 2)]],
|
||||
name="Rz")
|
||||
|
||||
|
||||
H = UnitaryOperator([[1 / np.sqrt(2), 1 / np.sqrt(2)],
|
||||
[1 / np.sqrt(2), -1 / np.sqrt(2)], ],
|
||||
name="H")
|
||||
@ -667,7 +723,11 @@ class MeasurementOpeartor(HermitianOperator):
|
||||
return cls(matrix.conjugate_transpose().x(matrix).m)
|
||||
|
||||
def get_prob(self, state: State):
|
||||
"""Returns result of <ψ|M†_m M_m|ψ>
|
||||
"""
|
||||
# <ψ|
|
||||
state_ct = state.conjugate_transpose()
|
||||
# This is: <ψ| . M†_m M_m . |ψ>
|
||||
return state_ct.m.dot(self.m.dot(state.m)).item()
|
||||
|
||||
|
||||
@ -707,6 +767,11 @@ def testRotPauli():
|
||||
assert np.allclose(abs_squared(Rz(np.pi).m), abs_squared(Z.m))
|
||||
|
||||
|
||||
def test_eigenstuff():
|
||||
assert LinearTransformation(m=[[1, 0], [0, 0]]).get_eigens() == \
|
||||
[(1.0, HorizontalVector([1., 0.])), (0., HorizontalVector([0., 1.]))]
|
||||
|
||||
|
||||
def test():
|
||||
# Test properties of Hilbert vector space
|
||||
# The four postulates of Quantum Mechanics
|
||||
@ -734,11 +799,9 @@ def test():
|
||||
|
||||
# II: Dynamics | The evolution of a closed system is described by a unitary transformation
|
||||
#
|
||||
# Operators turn one vector into another
|
||||
# the times 2 operator should return the times two multiplication
|
||||
_times_2 = Operator(lambda x: 2 * x)
|
||||
assert _times_2.on(5) == 10
|
||||
assert _times_2(5) == 10
|
||||
test_linear_operator()
|
||||
|
||||
test_eigenstuff()
|
||||
|
||||
# Understanding the difference between unitary and hermitians
|
||||
test_unitary_hermitian()
|
||||
|
Loading…
Reference in New Issue
Block a user