linear operators

This commit is contained in:
Daniel Tsvetkov 2020-02-04 14:29:10 +01:00
parent 11ed1b44ac
commit ba3be9b4ff

View File

@ -113,6 +113,18 @@ class Matrix(object):
return str(self.m)
class HorizontalVector(Matrix):
"""Horizontal vector is basically a list"""
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
super().__init__(m, *args, **kwargs)
if not self._is_vector():
raise TypeError("Not a vector")
def _is_vector(self):
return len(self.m.shape) == 1
class Vector(Matrix):
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
super().__init__(m, *args, **kwargs)
@ -337,38 +349,48 @@ def humanize(m):
class Operator(object):
def __init__(self, func=None, *args, **kwargs):
def __init__(self, func: sp.Lambda, *args, **kwargs):
"""An Operator turns one function into another"""
self.func = func
def on(self, *args, **kwargs):
return self(*args, **kwargs)
def on(self, *args):
return self(*args)
def __call__(self, *args, **kwargs):
return self.func(*args, **kwargs)
def __call__(self, *args):
return self.func(*args)
class LinearOperator(Operator):
def __init__(self, func=None, *args, **kwargs):
def __init__(self, func: sp.Lambda, *args, **kwargs):
"""Linear operators satisfy f(x+y) = f(x) + f(y) and a*f(x) = f(a*x)"""
super().__init__(func, *args, **kwargs)
if not self._is_linear():
raise TypeError("Not a linear operator")
def _is_linear(self):
# TODO: How to verify if the func is linear?
# in case of Unitary Operator, self.func is a lambda that takes a Matrix (assumes has .m component)
# A function is (jointly) linear in a given set of variables
# if all second-order derivatives are identically zero (including mixed ones).
# https://stackoverflow.com/questions/36283548/check-if-an-equation-is-linear-for-a-specific-set-of-variables
expr, vars_ = self.func.expr, self.func.variables
for x in vars_:
for y in vars_:
try:
if not sp.Eq(sp.diff(expr, x, y), 0):
return False
except TypeError:
return False
return True
# a, b = sympy.symbols('a, b')
# expr, vars_ = a+b, [a, b]
# for x in vars_:
# for y in vars_:
# try:
# if not sympy.Eq(sympy.diff(expr, x, y), 0):
# return False
# except TypeError:
# return False
# return True
def test_linear_operator():
# Operators turn one vector into another
# the times 2 operator should return the times two multiplication
_x = sp.Symbol('x')
_times_2 = LinearOperator(sp.Lambda(_x, 2 * _x))
assert _times_2.on(5) == 10
assert _times_2(5) == 10
assert_raises(TypeError, "Not a linear operator", LinearOperator, sp.Lambda(_x, _x ** 2))
class SquareMatrix(Matrix):
@ -381,6 +403,39 @@ class SquareMatrix(Matrix):
return self.m.shape[0] == self.m.shape[1]
class LinearTransformation(LinearOperator, Matrix):
def __init__(self, m: ListOrNdarray, func=None, name: str = '', *args, **kwargs):
"""LinearTransformation (or linear map) inherits from both LinearOperator and a Matrix
It is used to act on a State vector by defining the operator to be the dot product"""
self.name = name
Matrix.__init__(self, m=m, *args, **kwargs)
self.func = func or self.operator_func
LinearOperator.__init__(self, func=func, *args, **kwargs)
def _is_linear(self):
# Every matrix transformation is a linear transformation
# https://www.mathbootcamps.com/proof-every-matrix-transformation-is-a-linear-transformation/
return True
def operator_func(self, other):
return Vector(np.dot(self.m, other.m))
def get_eigens(self):
""" Returns (eigenvalue, eigenvector)
M|v> = λ|v> ->
M :is the operator (self)
|v> :is eigenstate of M
λ :is the corresponding eigenvalue
"""
eigenvalues, eigenvectors = np.linalg.eig(self.m)
rv = []
for i in range(0, len(eigenvectors)):
eigenvalue = eigenvalues[i]
eigenvector = HorizontalVector(eigenvectors[:, i])
rv.append((eigenvalue, eigenvector))
return rv
class UnitaryMatrix(SquareMatrix):
def __init__(self, m: ListOrNdarray, *args, **kwargs):
"""Represents a Unitary matrix that satisfies UU+ = I"""
@ -407,13 +462,13 @@ class HermitianMatrix(SquareMatrix):
return np.isclose(self.m, self._conjugate_transpose()).all()
class UnitaryOperator(LinearOperator, UnitaryMatrix):
class UnitaryOperator(LinearTransformation, UnitaryMatrix):
def __init__(self, m: ListOrNdarray, name: str = '', *args, **kwargs):
"""UnitaryOperator inherits from both LinearOperator and a Unitary matrix
"""UnitaryOperator inherits from both LinearTransformation and a Unitary matrix
It is used to act on a State vector by defining the operator to be the dot product"""
self.name = name
UnitaryMatrix.__init__(self, m=m, *args, **kwargs)
LinearOperator.__init__(self, func=self.operator_func, *args, **kwargs)
LinearTransformation.__init__(self, m=m, func=self.operator_func, *args, **kwargs)
def operator_func(self, other):
return State(np.dot(self.m, other.m))
@ -424,9 +479,9 @@ class UnitaryOperator(LinearOperator, UnitaryMatrix):
return str(self.m)
class HermitianOperator(LinearOperator, HermitianMatrix):
class HermitianOperator(LinearTransformation, HermitianMatrix):
def __init__(self, m: ListOrNdarray, name: str = '', *args, **kwargs):
"""HermitianMatrix inherits from both LinearOperator and a Hermitian matrix
"""HermitianMatrix inherits from both LinearTransformation and a Hermitian matrix
It is used to act on a State vector by defining the operator to be the dot product"""
self.name = name
HermitianMatrix.__init__(self, m=m, *args, **kwargs)
@ -596,6 +651,7 @@ def Rz(theta):
[0, np.power(np.e, 1j * theta / 2)]],
name="Rz")
H = UnitaryOperator([[1 / np.sqrt(2), 1 / np.sqrt(2)],
[1 / np.sqrt(2), -1 / np.sqrt(2)], ],
name="H")
@ -604,7 +660,7 @@ CNOT = TwoQubitOperator([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0], ],
C_partial, x_partial, I, X)
C_partial, x_partial, I, X)
def assert_raises(exception, msg, callable, *args, **kwargs):
@ -667,7 +723,11 @@ class MeasurementOpeartor(HermitianOperator):
return cls(matrix.conjugate_transpose().x(matrix).m)
def get_prob(self, state: State):
"""Returns result of <ψ|M†_m M_m|ψ>
"""
# <ψ|
state_ct = state.conjugate_transpose()
# This is: <ψ| . M†_m M_m . |ψ>
return state_ct.m.dot(self.m.dot(state.m)).item()
@ -707,6 +767,11 @@ def testRotPauli():
assert np.allclose(abs_squared(Rz(np.pi).m), abs_squared(Z.m))
def test_eigenstuff():
assert LinearTransformation(m=[[1, 0], [0, 0]]).get_eigens() == \
[(1.0, HorizontalVector([1., 0.])), (0., HorizontalVector([0., 1.]))]
def test():
# Test properties of Hilbert vector space
# The four postulates of Quantum Mechanics
@ -734,11 +799,9 @@ def test():
# II: Dynamics | The evolution of a closed system is described by a unitary transformation
#
# Operators turn one vector into another
# the times 2 operator should return the times two multiplication
_times_2 = Operator(lambda x: 2 * x)
assert _times_2.on(5) == 10
assert _times_2(5) == 10
test_linear_operator()
test_eigenstuff()
# Understanding the difference between unitary and hermitians
test_unitary_hermitian()