TODO quantum circuit

This commit is contained in:
Daniel Tsvetkov 2019-12-18 16:05:03 +01:00
parent fae34da41a
commit a09bdb949c

View File

@ -236,11 +236,7 @@ class UnitaryOperator(LinearOperator, UnitaryMatrix):
LinearOperator.__init__(self, func=self.operator_func, *args, **kwargs)
def operator_func(self, other):
if not hasattr(other, "m"):
other_m = other
else:
other_m = other.m
return State(np.dot(self.m, other_m))
return State(np.dot(self.m, other.m))
def __repr__(self):
if self.name:
@ -248,6 +244,68 @@ class UnitaryOperator(LinearOperator, UnitaryMatrix):
return str(self.m)
# TODO - How to add a CNOT gate to the Quantum Processor?
# Imagine if I have to act on a 3-qubit computer and CNOT(q1, q3)
#
# Decomposed CNOT :
# reverse engineered from
# https://quantumcomputing.stackexchange.com/questions/4252/how-to-derive-the-cnot-matrix-for-a-3-qbit-system-where-the-control-target-qbi
#
# CNOT(q1, I, q2):
# |0><0| x I_2 x I_2 + |1><1| x I_2 x X
# np.kron(np.kron(np.outer(_0.m, _0.m), np.eye(2)), np.eye(2)) + np.kron(np.kron(np.outer(_1.m, _1.m), np.eye(2)), X.m)
#
#
# CNOT(q1, q2):
# |0><0| x I + |1><1| x X
# np.kron(np.outer(_0.m, _0.m), np.eye(2)) + np.kron(np.outer(_1.m, _1.m), X.m)
# _0.x(_0) * Matrix(I.m) + _1.x(_1) * Matrix(X.m)
class TwoQubitPartial(object):
def __init__(self, rpr):
self.rpr = rpr
self.operator = None
def __repr__(self):
return str("-{}-".format(self.rpr))
C_ = TwoQubitPartial("C")
x_ = TwoQubitPartial("x")
class TwoQubitOperator(UnitaryOperator):
def __init__(self, m: ListOrNdarray, A: TwoQubitPartial, B: TwoQubitPartial,
A_p: UnitaryOperator, B_p: UnitaryOperator, *args, **kwargs):
super().__init__(m, *args, **kwargs)
A.operator, B.operator = self, self
self.A = A
self.B = B
self.A_p = A_p
self.B_p = B_p
def verify_step(self, step):
if not (step.count(self.A) == 1 and step.count(self.B) == 1):
raise RuntimeError("Both CONTROL and TARGET need to be defined in the same step exactly once")
def compose(self, step, state):
# TODO: Hacky way to do CNOT
# Should generalize for a 2-Qubit gate
# _0.x(_0) * Matrix(I.m) + _1.x(_1) * Matrix(X.m)
outer_0, outer_1 = [], []
for s in step:
if s == self.A:
outer_0.append(_0.x(_0))
outer_1.append(_1.x(_1))
elif s == self.B:
outer_0.append(Matrix(self.A_p.m))
outer_1.append(Matrix(self.B_p.m))
else:
outer_0.append(Matrix(s.m))
outer_1.append(Matrix(s.m))
return reduce((lambda x, y: x * y), outer_0) + reduce((lambda x, y: x * y), outer_1)
"""
Define States and Operators
"""
@ -290,69 +348,6 @@ H = UnitaryOperator([[1 / np.sqrt(2), 1 / np.sqrt(2)],
[1 / np.sqrt(2), -1 / np.sqrt(2)], ],
name="H")
# TODO - How to add a CNOT gate to the Quantum Processor?
# Imagine if I have to act on a 3-qubit computer and CNOT(q1, q3)
#
# Decomposed CNOT :
# reverse engineered from
# https://quantumcomputing.stackexchange.com/questions/4252/how-to-derive-the-cnot-matrix-for-a-3-qbit-system-where-the-control-target-qbi
#
# CNOT(q1, I, q2):
# |0><0| x I_2 x I_2 + |1><1| x I_2 x X
# np.kron(np.kron(np.outer(_0.m, _0.m), np.eye(2)), np.eye(2)) + np.kron(np.kron(np.outer(_1.m, _1.m), np.eye(2)), X.m)
#
#
# CNOT(q1, q2):
# |0><0| x I + |1><1| x X
# np.kron(np.outer(_0.m, _0.m), np.eye(2)) + np.kron(np.outer(_1.m, _1.m), X.m)
# _0.x(_0) * Matrix(I.m) + _1.x(_1) * Matrix(X.m)
class TwoQubitPartial(object):
def __init__(self, rpr):
self.rpr = rpr
self.operator = None
def __repr__(self):
return str("-{}-".format(self.rpr))
C_ = TwoQubitPartial("C")
x_ = TwoQubitPartial("x")
class TwoQubitOperator(UnitaryOperator):
def __init__(self, m: ListOrNdarray, A: TwoQubitPartial, B: TwoQubitPartial,
A_p: UnitaryOperator, B_p:UnitaryOperator, *args, **kwargs):
super().__init__(m, *args, **kwargs)
A.operator, B.operator = self, self
self.A = A
self.B = B
self.A_p = A_p
self.B_p = B_p
def verify_step(self, step):
if not (step.count(self.A) == 1 and step.count(self.B) == 1):
raise RuntimeError("Both CONTROL and TARGET need to be defined in the same step exactly once")
def compose(self, step, state):
# TODO: Hacky way to do CNOT
# Should generalize for a 2-Qubit gate
# _0.x(_0) * Matrix(I.m) + _1.x(_1) * Matrix(X.m)
outer_0, outer_1 = [], []
for s in step:
if s == self.A:
outer_0.append(_0.x(_0))
outer_1.append(_1.x(_1))
elif s == self.B:
outer_0.append(Matrix(self.A_p.m))
outer_1.append(Matrix(self.B_p.m))
else:
outer_0.append(Matrix(s.m))
outer_1.append(Matrix(s.m))
return reduce((lambda x, y: x * y), outer_0) + reduce((lambda x, y: x * y), outer_1)
CNOT = TwoQubitOperator([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
@ -513,18 +508,11 @@ def naive_load_test(N):
gc.collect()
class QuantumProcessor(object):
HALT_STATE = "HALT"
RUNNING_STATE = "RUNNING"
class QuantumCircuit(object):
def __init__(self, n_qubits: int):
self.n_qubits = n_qubits
self.steps = [[_0 for _ in range(n_qubits)], ]
self._called_add_row = 0
self.current_step = 0
self.current_quantum_state = None
self.current_state = self.HALT_STATE
self.reset()
def add_row_step(self, row: int, step: int, qbit_state):
if len(self.steps) <= step:
@ -553,39 +541,14 @@ class QuantumProcessor(object):
for row_data in rows_data:
self.add_row(row_data)
def compose_quantum_state(self, step):
if any([type(s) is TwoQubitPartial for s in step]):
two_qubit_gates = filter(lambda s: type(s) is TwoQubitPartial, step)
state = []
for two_qubit_gate in two_qubit_gates:
two_qubit_gate.operator.verify_step(step)
state = two_qubit_gate.operator.compose(step, state)
return state
return reduce((lambda x, y: x * y), step)
def step(self):
if self.current_step == 0 and self.current_state == self.HALT_STATE:
self.current_state = self.RUNNING_STATE
if self.current_step >= len(self.steps):
self.current_state = self.HALT_STATE
raise RuntimeWarning("Halted")
running_step = self.steps[self.current_step]
def get_next_step(self):
running_step = self.steps[self.c_step]
step_quantum_state = self.compose_quantum_state(running_step)
if not self.current_quantum_state:
self.current_quantum_state = step_quantum_state
if not self.c_q_state:
self.c_q_state = step_quantum_state
else:
self.current_quantum_state = State((step_quantum_state | self.current_quantum_state).m)
self.current_step += 1
def run(self):
for _ in self.steps:
self.step()
self.current_state = self.HALT_STATE
def reset(self):
self.current_step = 0
self.current_quantum_state = None
self.current_state = self.HALT_STATE
self.c_q_state = State((step_quantum_state | self.c_q_state).m)
self.c_step += 1
def print(self):
print("=" * 3 * len(self.steps))
@ -597,10 +560,56 @@ class QuantumProcessor(object):
print(line)
print("=" * 3 * len(self.steps))
class QuantumProcessor(object):
HALT_STATE = "HALT"
RUNNING_STATE = "RUNNING"
def __init__(self, circuit: QuantumCircuit):
self.circuit = circuit
self.c_step = 0
self.c_q_state = None
self.c_state = self.HALT_STATE
self.reset()
def compose_quantum_state(self, step):
if any([type(s) is TwoQubitPartial for s in step]):
two_qubit_gates = filter(lambda s: type(s) is TwoQubitPartial, step)
state = []
for two_qubit_gate in two_qubit_gates:
two_qubit_gate.operator.verify_step(step)
state = two_qubit_gate.operator.compose(step, state)
return state
return reduce((lambda x, y: x * y), step)
def step(self):
if self.c_step == 0 and self.c_state == self.HALT_STATE:
self.c_state = self.RUNNING_STATE
if self.c_step >= len(self.circuit.steps):
self.c_state = self.HALT_STATE
raise RuntimeWarning("Halted")
running_step = self.circuit.get_next_step()
step_quantum_state = self.compose_quantum_state(running_step)
if not self.c_q_state:
self.c_q_state = step_quantum_state
else:
self.c_q_state = State((step_quantum_state | self.c_q_state).m)
self.c_step += 1
def run(self):
for _ in self.steps:
self.step()
self.current_state = self.HALT_STATE
def reset(self):
self.c_step = 0
self.c_q_state = None
self.c_state = self.HALT_STATE
def measure(self):
if self.current_state != self.HALT_STATE:
if self.c_state != self.HALT_STATE:
raise RuntimeError("Processor is still running")
return self.current_quantum_state.measure()
return self.c_q_state.measure()
def run_n(self, n: int):
for i in range(n):