normalize state

This commit is contained in:
Daniel Tsvetkov 2020-03-29 18:15:40 +02:00
parent 67cd000f5a
commit 6ae883d818
3 changed files with 46 additions and 35 deletions

View File

@ -115,7 +115,8 @@ def test_krisi_measurement_3():
# P_minus = b_psi_m.x(b_psi_m)
P_s = b_psi_p.x(b_psi_p) + b_phi_m.x(b_phi_m) + b_phi_p.x(b_phi_p)
post_state = State(MeasurementOperator(P_s.m).on(q1q2_st))
meas = MeasurementOperator(P_s.m).on(q1q2_st)
post_state = State(State.normalize(meas))
if case == CASE_ID_ID:
assert post_state == q1q2_st
@ -123,7 +124,7 @@ def test_krisi_measurement_3():
assert post_state != q1q2_st
q3 = State.from_bloch_angles(theta2, phi2)
meas = State(post_state * q3).measure(basis=basis)
meas = State(State.normalize(post_state * q3)).measure(basis=basis)
# # TODO: This part measures the first two qubits in Bell basis, then:
# # 1. constructs a new pure state

View File

@ -34,7 +34,7 @@ def classical_func_search_single_rv(func, input_range):
return rv
def _3sat_old(params):
def _3sat(params):
# 3-SAT from here: https://qiskit.org/textbook/ch-applications/satisfiability-grover.html
x1, x2, x3 = params
return (not x1 or not x2 or not x3) and \
@ -43,7 +43,8 @@ def _3sat_old(params):
(x1 or not x2 or not x3) and \
(not x1 or x2 or x3)
def _3sat(params):
def _3sat_2(params):
# 3-SAT from here: https://cstheory.stackexchange.com/questions/38538/oracle-construction-for-grovers-algorithm
x1, x2, x3, x4 = params
return (not x1 or not x3 or not x4) and \
@ -52,9 +53,10 @@ def _3sat(params):
(x1 or x3 or x4) and \
(not x1 or x2 or not x3)
def classical_3sat(func):
# Generate all possible true/false tupples for the 3-sat problem
input_range = list(itertools.product([True, False], repeat=4))
# Generate all possible true/false tuples for the 3-sat problem
input_range = list(itertools.product([True, False], repeat=3))
random.shuffle(input_range)
return classical_func_search_multi_rv(func, input_range)

66
lib.py
View File

@ -130,20 +130,31 @@ class Matrix(object):
return str(self.m)
MatrixOrList = Union[Matrix, ListOrNdarray]
class HorizontalVector(Matrix):
"""Horizontal vector is basically a list"""
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
def __init__(self, m: MatrixOrList = None, *args, **kwargs):
super().__init__(m, *args, **kwargs)
if not self._is_vector():
raise TypeError("Not a vector")
if type(m) in [Matrix]:
super().__init__(m.m, *args, **kwargs)
else:
super().__init__(m, *args, **kwargs)
if not self._is_horizontal_vector():
raise TypeError("Not a horizontal vector")
def _is_vector(self):
def _is_horizontal_vector(self):
return len(self.m.shape) == 1
class Vector(Matrix):
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
def __init__(self, m: MatrixOrList = None, *args, **kwargs):
super().__init__(m, *args, **kwargs)
if type(m) in [Matrix]:
super().__init__(m.m, *args, **kwargs)
else:
super().__init__(m, *args, **kwargs)
if not self._is_vector():
raise TypeError("Not a vector")
@ -152,13 +163,14 @@ class Vector(Matrix):
return self.m.shape[1] == 1
VectorOrList = Union[Vector, Matrix, ListOrNdarray]
VectorOrList = Union[Vector, MatrixOrList]
class State(Vector):
def __init__(self, m: VectorOrList = None, name: str = '', *args, **kwargs):
def __init__(self, m: VectorOrList = None, name: str = '',
allow_unnormalized=False, *args, **kwargs):
"""State vector representing quantum state"""
if type(m) in [Vector, Matrix]:
if type(m) in [Vector, Matrix, State]:
super().__init__(m.m, *args, **kwargs)
else:
super().__init__(m, *args, **kwargs)
@ -166,8 +178,18 @@ class State(Vector):
self.measurement_result = None
self.last_basis = None
# TODO: SHOULD WE NORMALIZE?
# if not self._is_normalized():
# raise TypeError("Not a normalized state vector")
if not allow_unnormalized and not self._is_normalized():
raise TypeError("Not a normalized state vector")
@staticmethod
def normalize(vector: Vector):
"""Normalize a state by dividing by the square root of sum of the
squares of states"""
norm_coef = np.sqrt(np.sum(np.abs(vector.m ** 2)))
if norm_coef == 0:
raise TypeError("zero-sum vector")
new_m = vector.m / norm_coef
return State(new_m)
def _is_normalized(self):
return np.isclose(np.sum(np.abs(self.m ** 2)), 1.0)
@ -324,7 +346,7 @@ class State(Vector):
weights += [prob]
empty_choices, empty_weights = [], []
if allow_empty == True:
if allow_empty:
empty_prob = 1.0 - sum(weights)
empty_weights = [empty_prob]
empty_choices = [REPR_EMPTY_SET]
@ -332,7 +354,7 @@ class State(Vector):
# TODO: This may be wrong
# normalize the weights
weights = list(np.array(weights) / sum(weights))
# assert np.isclose(sum(weights), 1.0)
assert np.isclose(sum(weights), 1.0)
format_str = self.get_fmt_of_element()
choices = empty_choices + [format_str.format(i) for i in
@ -424,20 +446,6 @@ class Ket(State):
State.__init__(self, *args, **kwargs)
def test_measure_partial():
state = b_phi_p
state.measure_partial(1)
def normalize_state(vector: Vector):
"""Normalize a state by dividing by the square root of sum of the squares
of states"""
norm_coef = np.sqrt(np.sum(np.array(vector.m) ** 2))
if norm_coef == 0:
raise TypeError("zero-sum vector")
return State(vector.m / norm_coef)
def s(q, name=None):
"""Helper method for creating state easily"""
if type(q) == str:
@ -741,7 +749,7 @@ Define States and Operators
"""
# EMPTY STATE
_E = State([[0],
_E = Vector([[0],
[0]],
name=REPR_EMPTY_SET)
@ -1516,7 +1524,7 @@ def test_light():
def random_light():
random_pol = Vector(
[[np.random.uniform(0, 1)], [np.random.uniform(0, 1)]])
return normalize_state(random_pol)
return State.normalize(random_pol)
def experiment(id, random_ls, filters):
total_light = defaultdict(int)
@ -1528,7 +1536,7 @@ def test_light():
st = filters[0].on(r)
for filter in filters:
st = filter.on(st)
st = State(st)
st = State(st, allow_unnormalized=True)
total_light[st.measure(allow_empty=True)] += 1
print("{}. {}:\n {}".format(id, human_state, dict(total_light)))