auxilary methods for state
This commit is contained in:
parent
911d58bfde
commit
61f346c8bb
@ -1,12 +1,11 @@
|
|||||||
import random
|
import random
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from functools import reduce
|
from functools import reduce
|
||||||
|
from numbers import Complex
|
||||||
from typing import Union
|
from typing import Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from numbers import Complex
|
import sympy as sp
|
||||||
|
|
||||||
import sympy
|
|
||||||
|
|
||||||
from load_test import sizeof_fmt
|
from load_test import sizeof_fmt
|
||||||
|
|
||||||
@ -105,6 +104,9 @@ class Matrix(object):
|
|||||||
def complex_conjugate(self):
|
def complex_conjugate(self):
|
||||||
return Matrix(self._complex_conjugate())
|
return Matrix(self._complex_conjugate())
|
||||||
|
|
||||||
|
def __repr__(self):
|
||||||
|
return str(self.m)
|
||||||
|
|
||||||
|
|
||||||
class Vector(Matrix):
|
class Vector(Matrix):
|
||||||
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
|
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
|
||||||
@ -168,17 +170,29 @@ class State(Vector):
|
|||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
if not self.name:
|
if not self.name:
|
||||||
|
if np.count_nonzero(self.m == 1):
|
||||||
|
fmt_str = self.get_fmt_of_element()
|
||||||
|
index = np.where(self.m == [1])[0][0]
|
||||||
|
self.name = fmt_str.format(index)
|
||||||
|
else:
|
||||||
for well_known_state in well_known_states:
|
for well_known_state in well_known_states:
|
||||||
|
try:
|
||||||
if self == well_known_state:
|
if self == well_known_state:
|
||||||
return repr(well_known_state)
|
return repr(well_known_state)
|
||||||
|
except:
|
||||||
|
...
|
||||||
for used_state in UNIVERSE_STATES:
|
for used_state in UNIVERSE_STATES:
|
||||||
|
try:
|
||||||
if self == used_state:
|
if self == used_state:
|
||||||
return repr(used_state)
|
return repr(used_state)
|
||||||
|
except:
|
||||||
|
...
|
||||||
next_state_sub = ''.join([REPR_MATH_SUBSCRIPT_NUMBERS[int(d)] for d in str(len(UNIVERSE_STATES))])
|
next_state_sub = ''.join([REPR_MATH_SUBSCRIPT_NUMBERS[int(d)] for d in str(len(UNIVERSE_STATES))])
|
||||||
self.name = '{}{}'.format(REPR_GREEK_PSI, next_state_sub)
|
self.name = '{}{}'.format(REPR_GREEK_PSI, next_state_sub)
|
||||||
UNIVERSE_STATES.append(self)
|
UNIVERSE_STATES.append(self)
|
||||||
matrix_rep = "{}".format(self.m).replace('[', '').replace(']', '').replace('\n', '|').strip()
|
# matrix_rep = "{}".format(self.m).replace('[', '').replace(']', '').replace('\n', '|').strip()
|
||||||
state_name = '|{}> = {}'.format(self.name, matrix_rep)
|
# state_name = '|{}> = {}'.format(self.name, matrix_rep)
|
||||||
|
state_name = '|{}>'.format(self.name)
|
||||||
return state_name
|
return state_name
|
||||||
|
|
||||||
def norm(self):
|
def norm(self):
|
||||||
@ -199,12 +213,89 @@ class State(Vector):
|
|||||||
e_j = State([[1] if i == int(j) else [0] for i in range(len(self.m))])
|
e_j = State([[1] if i == int(j) else [0] for i in range(len(self.m))])
|
||||||
return np.absolute((e_j | self).m.item(0)) ** 2
|
return np.absolute((e_j | self).m.item(0)) ** 2
|
||||||
|
|
||||||
|
def get_fmt_of_element(self):
|
||||||
|
return "{:0" + str(int(np.ceil(np.log2(len(self))))) + "b}"
|
||||||
|
|
||||||
def measure(self):
|
def measure(self):
|
||||||
weights = [self.get_prob(j) for j in range(len(self))]
|
weights = [self.get_prob(j) for j in range(len(self))]
|
||||||
format_str = "{:0" + str(int(np.ceil(np.log2(len(weights))))) + "b}"
|
format_str = self.get_fmt_of_element()
|
||||||
choices = [format_str.format(i) for i in range(len(weights))]
|
choices = [format_str.format(i) for i in range(len(weights))]
|
||||||
return random.choices(choices, weights)[0]
|
return random.choices(choices, weights)[0]
|
||||||
|
|
||||||
|
def measure_n(self, n=1):
|
||||||
|
"""measures n times"""
|
||||||
|
measurements = defaultdict(int)
|
||||||
|
for _ in range(n):
|
||||||
|
k = self.measure()
|
||||||
|
measurements[k] += 1
|
||||||
|
return measurements
|
||||||
|
|
||||||
|
def pretty_print(self):
|
||||||
|
format_str = self.get_fmt_of_element() + " | {}"
|
||||||
|
|
||||||
|
for i, element in enumerate(self.m):
|
||||||
|
print(format_str.format(i, humanize_num(element[0])))
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def from_string(cls, q):
|
||||||
|
try:
|
||||||
|
bin_repr = q[1:-1]
|
||||||
|
dec_bin = int(bin_repr, 2)
|
||||||
|
bin_length = 2 ** len(bin_repr)
|
||||||
|
arr = [[1] if i == dec_bin else [0] for i in range(bin_length)]
|
||||||
|
except:
|
||||||
|
raise Exception("State from string should be of the form |00..01> with all numbers either 0 or 1")
|
||||||
|
return cls(arr)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def get_random_state_angles():
|
||||||
|
phi = np.random.uniform(0, 2 * np.pi)
|
||||||
|
t = np.random.uniform(0, 1)
|
||||||
|
theta = np.arccos(1 - 2 * t)
|
||||||
|
return theta, phi
|
||||||
|
|
||||||
|
def get_bloch_coordinates(self):
|
||||||
|
theta, phi = self.to_angles()
|
||||||
|
x = np.sin(theta) * np.cos(phi)
|
||||||
|
y = np.sin(theta) * np.sin(phi)
|
||||||
|
z = np.cos(theta)
|
||||||
|
return [x, y, z]
|
||||||
|
|
||||||
|
|
||||||
|
def s(q):
|
||||||
|
"""Helper method for creating state easily"""
|
||||||
|
if type(q) == str:
|
||||||
|
# e.g. |000>
|
||||||
|
if q[0] == '|' and q[-1] == '>':
|
||||||
|
return State.from_string(q)
|
||||||
|
elif type(q) == list:
|
||||||
|
# e.g. s([1,0]) => |0>
|
||||||
|
return State(np.reshape(q, (len(q), 1)))
|
||||||
|
return State(q)
|
||||||
|
|
||||||
|
|
||||||
|
def humanize_num(fl, tolerance=1e-3):
|
||||||
|
if np.abs(fl) < tolerance:
|
||||||
|
return 0
|
||||||
|
if np.abs(fl.imag) < tolerance:
|
||||||
|
fl = fl.real
|
||||||
|
try:
|
||||||
|
return sp.nsimplify(fl, [sp.pi], tolerance, full=True)
|
||||||
|
except:
|
||||||
|
return sp.nsimplify(fl, [sp.pi], tolerance)
|
||||||
|
|
||||||
|
|
||||||
|
def pp(m, tolerance=1e-3):
|
||||||
|
for element in m:
|
||||||
|
print(humanize_num(element, tolerance=tolerance))
|
||||||
|
|
||||||
|
|
||||||
|
def humanize(m):
|
||||||
|
rv = []
|
||||||
|
for element in m:
|
||||||
|
rv.append(humanize(element))
|
||||||
|
return rv
|
||||||
|
|
||||||
|
|
||||||
class Operator(object):
|
class Operator(object):
|
||||||
def __init__(self, func=None, *args, **kwargs):
|
def __init__(self, func=None, *args, **kwargs):
|
||||||
@ -265,6 +356,18 @@ class UnitaryMatrix(SquareMatrix):
|
|||||||
return np.isclose(UU_, I).all()
|
return np.isclose(UU_, I).all()
|
||||||
|
|
||||||
|
|
||||||
|
class HermitianMatrix(SquareMatrix):
|
||||||
|
def __init__(self, m: ListOrNdarray, *args, **kwargs):
|
||||||
|
"""Represents a Hermitian matrix that satisfies U=U+"""
|
||||||
|
super().__init__(m, *args, **kwargs)
|
||||||
|
if not self._is_hermitian():
|
||||||
|
raise TypeError("Not a Hermitian matrix")
|
||||||
|
|
||||||
|
def _is_hermitian(self):
|
||||||
|
"""Checks if its equal to the conjugate transpose U = U+"""
|
||||||
|
return np.isclose(self.m, self._conjugate_transpose()).all()
|
||||||
|
|
||||||
|
|
||||||
class UnitaryOperator(LinearOperator, UnitaryMatrix):
|
class UnitaryOperator(LinearOperator, UnitaryMatrix):
|
||||||
def __init__(self, m: ListOrNdarray, name: str = '', *args, **kwargs):
|
def __init__(self, m: ListOrNdarray, name: str = '', *args, **kwargs):
|
||||||
"""UnitaryOperator inherits from both LinearOperator and a Unitary matrix
|
"""UnitaryOperator inherits from both LinearOperator and a Unitary matrix
|
||||||
@ -364,19 +467,7 @@ _m = State([[1 / np.sqrt(2)],
|
|||||||
[- 1 / np.sqrt(2)]],
|
[- 1 / np.sqrt(2)]],
|
||||||
name='-')
|
name='-')
|
||||||
|
|
||||||
_00 = State([[1],
|
well_known_states = [_p, _m]
|
||||||
[0],
|
|
||||||
[0],
|
|
||||||
[0]],
|
|
||||||
name='00')
|
|
||||||
|
|
||||||
_11 = State([[0],
|
|
||||||
[0],
|
|
||||||
[0],
|
|
||||||
[1]],
|
|
||||||
name='11')
|
|
||||||
|
|
||||||
well_known_states = [_0, _1, _p, _m]
|
|
||||||
|
|
||||||
_ = I = UnitaryOperator([[1, 0],
|
_ = I = UnitaryOperator([[1, 0],
|
||||||
[0, 1]],
|
[0, 1]],
|
||||||
@ -414,6 +505,57 @@ C, x = CNOT.A, CNOT.B
|
|||||||
###########################################################
|
###########################################################
|
||||||
|
|
||||||
|
|
||||||
|
def assert_raises(exception, msg, callable, *args, **kwargs):
|
||||||
|
try:
|
||||||
|
callable(*args, **kwargs)
|
||||||
|
except exception as e:
|
||||||
|
assert str(e) == msg
|
||||||
|
return
|
||||||
|
assert False
|
||||||
|
|
||||||
|
|
||||||
|
def assert_not_raises(exception, msg, callable, *args, **kwargs):
|
||||||
|
try:
|
||||||
|
callable(*args, **kwargs)
|
||||||
|
except exception as e:
|
||||||
|
if str(e) == msg:
|
||||||
|
assert False
|
||||||
|
|
||||||
|
|
||||||
|
def test_unitary_hermitian():
|
||||||
|
# Unitary is UU+ = I; Hermitian is U = U+
|
||||||
|
# Matrixes could be either, neither or both
|
||||||
|
# Quantum operators are described by unitary transformations
|
||||||
|
# TODO: What are Hermitians?
|
||||||
|
h_not_u = [
|
||||||
|
[1, 0],
|
||||||
|
[0, 2],
|
||||||
|
]
|
||||||
|
assert_not_raises(TypeError, "Not a Hermitian matrix", HermitianMatrix, h_not_u)
|
||||||
|
assert_raises(TypeError, "Not a Unitary matrix", UnitaryMatrix, h_not_u)
|
||||||
|
|
||||||
|
u_not_h = [
|
||||||
|
[1, 0],
|
||||||
|
[0, 1j],
|
||||||
|
]
|
||||||
|
assert_raises(TypeError, "Not a Hermitian matrix", HermitianMatrix, u_not_h)
|
||||||
|
assert_not_raises(TypeError, "Not a Unitary matrix", UnitaryMatrix, u_not_h)
|
||||||
|
|
||||||
|
u_and_h = [
|
||||||
|
[0, 1],
|
||||||
|
[1, 0],
|
||||||
|
]
|
||||||
|
assert_not_raises(TypeError, "Not a Hermitian matrix", HermitianMatrix, u_and_h)
|
||||||
|
assert_not_raises(TypeError, "Not a Unitary matrix", UnitaryMatrix, u_and_h)
|
||||||
|
|
||||||
|
not_u_not_h = [
|
||||||
|
[1, 2],
|
||||||
|
[0, 1],
|
||||||
|
]
|
||||||
|
assert_raises(TypeError, "Not a Hermitian matrix", HermitianMatrix, not_u_not_h)
|
||||||
|
assert_raises(TypeError, "Not a Unitary matrix", UnitaryMatrix, not_u_not_h)
|
||||||
|
|
||||||
|
|
||||||
def test():
|
def test():
|
||||||
# Test properties of Hilbert vector space
|
# Test properties of Hilbert vector space
|
||||||
# The four postulates of Quantum Mechanics
|
# The four postulates of Quantum Mechanics
|
||||||
@ -445,6 +587,9 @@ def test():
|
|||||||
assert _times_2.on(5) == 10
|
assert _times_2.on(5) == 10
|
||||||
assert _times_2(5) == 10
|
assert _times_2(5) == 10
|
||||||
|
|
||||||
|
# Understanding the difference between unitary and hermitians
|
||||||
|
test_unitary_hermitian()
|
||||||
|
|
||||||
# Pauli X gate flips the |0> to |1> and the |1> to |0>
|
# Pauli X gate flips the |0> to |1> and the |1> to |0>
|
||||||
assert X | _1 == _0
|
assert X | _1 == _0
|
||||||
assert X | _0 == _1
|
assert X | _0 == _1
|
||||||
@ -456,8 +601,8 @@ def test():
|
|||||||
[0]])
|
[0]])
|
||||||
|
|
||||||
# III: Measurement | A quantum measurement is described by an orthonormal basis |e_j>
|
# III: Measurement | A quantum measurement is described by an orthonormal basis |e_j>
|
||||||
# for state space. If the initial state of the system is |psi>
|
# for state space. If the initial state of the system is |ψ>
|
||||||
# then we get outcome j with probability pr(j) = |<e_j|psi>|^2
|
# then we get outcome j with probability pr(j) = |<e_j|ψ>|^2
|
||||||
|
|
||||||
assert _0.get_prob(0) == 1 # Probability for |0> in 0 is 1
|
assert _0.get_prob(0) == 1 # Probability for |0> in 0 is 1
|
||||||
assert _0.get_prob(1) == 0 # Probability for |0> in 1 is 0
|
assert _0.get_prob(1) == 0 # Probability for |0> in 1 is 0
|
||||||
@ -468,7 +613,11 @@ def test():
|
|||||||
assert np.isclose(_p.get_prob(0), 0.5) # Probability for |+> in 0 is 0.5
|
assert np.isclose(_p.get_prob(0), 0.5) # Probability for |+> in 0 is 0.5
|
||||||
assert np.isclose(_p.get_prob(1), 0.5) # Probability for |+> in 1 is 0.5
|
assert np.isclose(_p.get_prob(1), 0.5) # Probability for |+> in 1 is 0.5
|
||||||
|
|
||||||
# IV: Compositing | tensor/kronecker product when composing
|
# IV: Compositing | The state space of a composite physical system
|
||||||
|
# is the tensor product of the state spaces
|
||||||
|
# of the component physical systems.
|
||||||
|
# i.e. if we have systems numbered 1 through n, ψ_i,
|
||||||
|
# then the joint state is |ψ_1> ⊗ |ψ_2> ⊗ ... ⊗ |ψ_n>
|
||||||
assert _0 * _0 == State([[1], [0], [0], [0]])
|
assert _0 * _0 == State([[1], [0], [0], [0]])
|
||||||
assert _0 * _1 == State([[0], [1], [0], [0]])
|
assert _0 * _1 == State([[0], [1], [0], [0]])
|
||||||
assert _1 * _0 == State([[0], [0], [1], [0]])
|
assert _1 * _0 == State([[0], [0], [1], [0]])
|
||||||
@ -534,6 +683,16 @@ def test_to_from_angles():
|
|||||||
assert s == qbit
|
assert s == qbit
|
||||||
|
|
||||||
|
|
||||||
|
def test_measure_n():
|
||||||
|
qq = State([
|
||||||
|
[0.5],
|
||||||
|
[0.5],
|
||||||
|
[0.5],
|
||||||
|
[0.5],
|
||||||
|
])
|
||||||
|
qq.measure_n(100)
|
||||||
|
|
||||||
|
|
||||||
def naive_load_test(N):
|
def naive_load_test(N):
|
||||||
import os
|
import os
|
||||||
import psutil
|
import psutil
|
||||||
@ -767,11 +926,6 @@ def test_quantum_processor():
|
|||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
test()
|
test()
|
||||||
test_to_from_angles()
|
pp(_p.get_bloch_coordinates())
|
||||||
test_quantum_processor()
|
# test_to_from_angles()
|
||||||
# print(_1 | _0)
|
# test_quantum_processor()
|
||||||
# qubit = _00 + _11
|
|
||||||
# print(qubit)
|
|
||||||
# bell = CNOT.on(qubit)
|
|
||||||
# HI = I*H
|
|
||||||
# print(bell)
|
|
||||||
|
Loading…
Reference in New Issue
Block a user