light experiment works

This commit is contained in:
Daniel Tsvetkov 2020-03-27 11:06:42 +01:00
parent 7bd12b203d
commit 4fd95fcbf6
4 changed files with 106 additions and 81 deletions

View File

@ -2,7 +2,7 @@ import cirq
import numpy as np import numpy as np
from collections import defaultdict from collections import defaultdict
from lib_q_computer_math import State, QuantumCircuit, QuantumProcessor, C, H, x, _, _0, _1 from lib import State, QuantumCircuit, QuantumProcessor, C, H, x, _, _0, _1
def from_angles_1(theta, phi): def from_angles_1(theta, phi):

View File

@ -1,4 +1,4 @@
from lib_q_computer_math import s from lib import s
def int_to_state(i): def int_to_state(i):

View File

@ -2,6 +2,7 @@ import random
from collections import defaultdict from collections import defaultdict
from functools import reduce from functools import reduce
from numbers import Complex from numbers import Complex
from pprint import pprint
from typing import Union from typing import Union
import numpy as np import numpy as np
@ -46,6 +47,9 @@ class Matrix(object):
def __add__(self, other): def __add__(self, other):
return Matrix(self.m + other.m) return Matrix(self.m + other.m)
def __sub__(self, other):
return Matrix(self.m - other.m)
def __eq__(self, other): def __eq__(self, other):
if isinstance(other, Complex): if isinstance(other, Complex):
return bool(np.allclose(self.m, other)) return bool(np.allclose(self.m, other))
@ -86,8 +90,30 @@ class Matrix(object):
def __len__(self): def __len__(self):
return len(self.m) return len(self.m)
def inner(self, other):
"""Define inner product - a.k.a dot product, scalar product - <0|0>"""
return Matrix(np.dot(self._conjugate_transpose(), other.m))
def dot(self, other):
"""Alias to inner"""
return self.inner(other)
def scalar(self, other):
"""Alias to inner"""
return self.inner(other)
def outer(self, other): def outer(self, other):
"""Define outer product |0><0|""" """Define outer product |0><0|
https://en.wikipedia.org/wiki/Outer_product
Given two vectors u and v, their outer product u v is defined
as the m × n matrix A obtained by multiplying each element of u
by each element of v
The outer product u v is equivalent to a matrix multiplication uvT,
provided that u is represented as a m × 1 column vector and v as a
n × 1 column vector (which makes vT a row vector).
"""
return Matrix(np.outer(self.m, other.m)) return Matrix(np.outer(self.m, other.m))
def x(self, other): def x(self, other):
@ -136,9 +162,15 @@ class Vector(Matrix):
return self.m.shape[1] == 1 return self.m.shape[1] == 1
VectorOrList = Union[Vector, ListOrNdarray]
class State(Vector): class State(Vector):
def __init__(self, m: ListOrNdarray = None, name: str = '', *args, **kwargs): def __init__(self, m: VectorOrList = None, name: str = '', *args, **kwargs):
"""State vector representing quantum state""" """State vector representing quantum state"""
if type(m) is Vector:
super().__init__(m.m, *args, **kwargs)
else:
super().__init__(m, *args, **kwargs) super().__init__(m, *args, **kwargs)
self.name = name self.name = name
self.measurement_result = None self.measurement_result = None
@ -190,6 +222,9 @@ class State(Vector):
assert 0 <= phi <= 2 * np.pi assert 0 <= phi <= 2 * np.pi
return theta, phi return theta, phi
def to_ket(self):
return self.conjugate_transpose()
def rotate_x(self, theta): def rotate_x(self, theta):
return Rx(theta).on(self) return Rx(theta).on(self)
@ -276,7 +311,7 @@ class State(Vector):
Measures with a measurement operator mo Measures with a measurement operator mo
TODO: Can't define `mo: MeasurementOperator` because in python you can't declare classes before defining them TODO: Can't define `mo: MeasurementOperator` because in python you can't declare classes before defining them
""" """
m = mo.on(self) / np.sqrt(mo.get_prob(self)) m = mo.on(self).m / np.sqrt(mo.get_prob(self))
return State(m) return State(m)
def measure_partial(self, qubit_n): def measure_partial(self, qubit_n):
@ -342,7 +377,7 @@ class State(Vector):
def test_measure_partial(): def test_measure_partial():
state = b_00 state = b_phi_p
state.measure_partial(1) state.measure_partial(1)
@ -635,31 +670,31 @@ _m = State([[1 / np.sqrt(2)],
name='-') name='-')
# 4 Bell states # 4 Bell states
b_00 = State([[1 / np.sqrt(2)], b_phi_p = State([[1 / np.sqrt(2)],
[0], [0],
[0], [0],
[1 / np.sqrt(2)]], [1 / np.sqrt(2)]],
name='B00') name="{}+".format(REPR_GREEK_PHI))
b_01 = State([[0], b_psi_p = State([[0],
[1 / np.sqrt(2)], [1 / np.sqrt(2)],
[1 / np.sqrt(2)], [1 / np.sqrt(2)],
[0]], [0]],
name='B01') name="{}+".format(REPR_GREEK_PSI))
b_10 = State([[1 / np.sqrt(2)], b_phi_m = State([[1 / np.sqrt(2)],
[0], [0],
[0], [0],
[-1 / np.sqrt(2)]], [-1 / np.sqrt(2)]],
name='B10') name="{}-".format(REPR_GREEK_PHI))
b_11 = State([[0], b_psi_m = State([[0],
[1 / np.sqrt(2)], [1 / np.sqrt(2)],
[-1 / np.sqrt(2)], [-1 / np.sqrt(2)],
[0]], [0]],
name='B11') name="{}-".format(REPR_GREEK_PSI))
well_known_states = [_p, _m, b_00, b_01, b_10, b_11] well_known_states = [_p, _m, b_phi_p, b_psi_p, b_phi_m, b_psi_m]
_ = I = UnitaryOperator([[1, 0], _ = I = UnitaryOperator([[1, 0],
[0, 1]], [0, 1]],
@ -847,17 +882,17 @@ def test():
assert _0 + _1 == _1 + _0 # commutativity of vector addition assert _0 + _1 == _1 + _0 # commutativity of vector addition
assert _0 + (_1 + _p) == (_0 + _1) + _p # associativity of vector addition assert _0 + (_1 + _p) == (_0 + _1) + _p # associativity of vector addition
assert 8 * (_0 + _1) == 8 * _0 + 8 * _1 # Linear when multiplying by constants assert 8 * (_0 + _1) == 8 * _0 + 8 * _1 # Linear when multiplying by constants
assert _0 | _0 == 1 # parallel have 1 product assert _0.inner(_0) == 1 # parallel have 1 product
assert _0 | _1 == 0 # orthogonal have 0 product assert _0.inner(_1) == 0 # orthogonal have 0 product
assert _0.is_orthogonal(_1) assert _0.is_orthogonal(_1)
assert _1 | (8 * _0) == 8 * (_1 | _0) # Inner product is linear multiplied by constants assert _1.inner(8 * _0) == 8 * _1.inner(_0) # Inner product is linear multiplied by constants
assert _p | (_1 + _0) == (_p | _1) + (_p | _0) # Inner product is linear in superpos of vectors assert _p.inner(_1 + _0) == _p.inner(_1) + _p.inner(_0) # Inner product is linear in superpos of vectors
assert np.isclose(_1.length(), 1.0) # all of the vector lengths are normalized assert np.isclose(_1.length(), 1.0) # all of the vector lengths are normalized
assert np.isclose(_0.length(), 1.0) assert np.isclose(_0.length(), 1.0)
assert np.isclose(_p.length(), 1.0) assert np.isclose(_p.length(), 1.0)
assert _0 | _1 == (_1 | _0).complex_conjugate() # non-commutative inner product assert _0.inner(_1) == _1.inner(_0).complex_conjugate() # non-commutative inner product
test_to_from_angles() test_to_from_angles()
@ -871,13 +906,13 @@ def test():
test_unitary_hermitian() test_unitary_hermitian()
# Pauli X gate flips the |0> to |1> and the |1> to |0> # Pauli X gate flips the |0> to |1> and the |1> to |0>
assert X | _1 == _0 assert X.on(_1) == _0
assert X | _0 == _1 assert X.on(_0) == _1
# Test the Y Pauli operator with complex number literal notation # Test the Y Pauli operator with complex number literal notation
assert Y | _0 == State([[0], assert Y.on(_0) == State([[0],
[1j]]) [1j]])
assert Y | _1 == State([[-1j], assert Y.on(_1) == State([[-1j],
[0]]) [0]])
# Test Pauli rotation gates # Test Pauli rotation gates
@ -928,11 +963,11 @@ def test():
# First - create a superposition # First - create a superposition
H = UnitaryOperator([[1 / np.sqrt(2), 1 / np.sqrt(2)], H = UnitaryOperator([[1 / np.sqrt(2), 1 / np.sqrt(2)],
[1 / np.sqrt(2), -1 / np.sqrt(2)], ]) [1 / np.sqrt(2), -1 / np.sqrt(2)], ])
superpos = H | _0 superpos = H.on(_0)
assert superpos == _p assert superpos == _p
# Then CNOT the superposition with a |0> qubit # Then CNOT the superposition with a |0> qubit
bell = CNOT | (superpos * _0) bell = CNOT.on(superpos * _0)
assert bell == State([[1 / np.sqrt(2)], assert bell == State([[1 / np.sqrt(2)],
[0.], [0.],
[0.], [0.],
@ -944,7 +979,6 @@ def test():
assert np.isclose(bell.get_prob(0b11), 0.5) # Probability for bell in 11 is 0.5 assert np.isclose(bell.get_prob(0b11), 0.5) # Probability for bell in 11 is 0.5
################################ ################################
# TODO: Don't know where outer product fits - something about density operator?
assert _0.x(_0) == Matrix([[1, 0], assert _0.x(_0) == Matrix([[1, 0],
[0, 0]]) [0, 0]])
assert _0.x(_1) == Matrix([[0, 1], assert _0.x(_1) == Matrix([[0, 1],
@ -1196,33 +1230,44 @@ def test_quantum_processor():
def test_light(): def test_light():
# http://alienryderflex.com/polarizer/ # http://alienryderflex.com/polarizer/
# TODO: Are these measurement operators the correct way to represent hor/ver/diag filter?
# No, becuase they are not unitaries
hor_filter = MeasurementOperator.create_from_prob(Matrix(_0.m), name='h') hor_filter = MeasurementOperator.create_from_prob(Matrix(_0.m), name='h')
diag_filter = MeasurementOperator.create_from_prob(Matrix(_p.m), name='d') diag_filter = MeasurementOperator.create_from_prob(Matrix(_p.m), name='d')
ver_filter = MeasurementOperator.create_from_prob(Matrix(_1.m), name='v') ver_filter = MeasurementOperator.create_from_prob(Matrix(_1.m), name='v')
# create random light/photon def random_light():
random_pol = Vector([[np.random.uniform(0, 1)], [np.random.uniform(0, 1)]]) random_pol = Vector([[np.random.uniform(0, 1)], [np.random.uniform(0, 1)]])
random_light = normalize_state(random_pol) return normalize_state(random_pol)
# TODO: Doesn't work... def experiment(id, random_ls, filters):
qc = QuantumCircuit(1, initial_steps=[[random_light]]) total_light = defaultdict(int)
qc.add_row([hor_filter, ver_filter]) human_state = "Light"
qc.print() for filter in filters:
qp = QuantumProcessor(qc) human_state += "->{}".format(filter.name)
qp.print_sample(qp.get_sample(100))
# add three filters as operators for r in random_ls:
qc = QuantumCircuit(1, initial_steps=[[random_light]]) st = filters[0].on(r)
qc.add_row([hor_filter, diag_filter, ver_filter]) for filter in filters:
qc.print() st = filter.on(st)
qp = QuantumProcessor(qc) st = State(st)
qp.print_sample(qp.get_sample(100)) total_light[st.measure()] += 1
print("{}. {}:\n {}".format(id, human_state, dict(total_light)))
its = 100
random_lights = [random_light() for _ in range(its)]
# Just horizonal - should result in some light
experiment(1, random_lights, [hor_filter, ])
# Vertical after horizonal - should result in 0
experiment(2, random_lights, [ver_filter, hor_filter])
# TODO: Something is wrong here...
# Vertical after diagonal after horizontal - should result in ~ 50% compared to only Horizontal
experiment(3, random_lights, [ver_filter, diag_filter, hor_filter])
if __name__ == "__main__": if __name__ == "__main__":
test() test()
# test_quantum_processor() test_quantum_processor()
# test_light() test_light()
# test_measure_partial() # test_measure_partial()

20
play.py
View File

@ -1,20 +0,0 @@
import numpy as np
from lib_q_computer_math import Vector, Matrix, MeasurementOperator, _0, _1, _p, normalize_state, State
def main():
random_pol = Vector([[np.random.uniform(0, 1)], [np.random.uniform(0, 1)]])
random_light = normalize_state(random_pol)
hor_filter = MeasurementOperator.create_from_prob(Matrix(_0.m), name='h')
diag_filter = MeasurementOperator.create_from_prob(Matrix(_p.m), name='d')
ver_filter = MeasurementOperator.create_from_prob(Matrix(_1.m), name='v')
State(hor_filter.on(random_light).m).measure()
print(hor_filter.on(_0))
print(ver_filter.on(_0))
print(ver_filter.on(hor_filter.on(_0)))
print(ver_filter.on(diag_filter.on(hor_filter.on(_0))))
print()
if __name__ == "__main__":
main()