Merge branch 'master' of gitlab.com:pisquared/quantum

This commit is contained in:
Daniel Tsvetkov 2020-01-29 13:54:08 +01:00
commit 406a0d4033

View File

@ -8,13 +8,26 @@ from typing import Union
import numpy as np
from numbers import Complex
import sympy
from load_test import sizeof_fmt
ListOrNdarray = Union[list, np.ndarray]
REPR_TENSOR_OP = ""
REPR_GREEK_PSI = "ψ"
REPR_GREEK_PHI = "φ"
REPR_MATH_KET = ""
REPR_MATH_BRA = ""
REPR_MATH_SQRT = ""
REPR_MATH_SUBSCRIPT_NUMBERS = "₀₁₂₃₄₅₆₇₈₉"
# Keep a reference to already used states for naming
UNIVERSE_STATES = []
class Matrix(object):
"""Represents a quantum state as a vector in Hilbert space"""
"""Wraps a Matrix... it's for my understanding, this could easily probably be np.array"""
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
"""
@ -32,12 +45,12 @@ class Matrix(object):
raise TypeError("m needs to be a list or ndarray type")
def __add__(self, other):
return other.__class__(self.m + other.m)
return Matrix(self.m + other.m)
def __eq__(self, other):
if isinstance(other, Complex):
return bool(np.allclose(self.m, other))
elif isinstance(other, TwoQubitGate):
elif isinstance(other, TwoQubitPartial):
return False
return np.allclose(self.m, other.m)
@ -47,9 +60,9 @@ class Matrix(object):
with another state is a composition via the Kronecker/Tensor product
"""
if isinstance(other, Complex):
return self.__class__(self.m * other)
return Matrix(self.m * other)
elif isinstance(other, Matrix):
return other.__class__(np.kron(self.m, other.m))
return self.__class__(np.kron(self.m, other.m))
raise NotImplementedError
def __rmul__(self, other):
@ -61,14 +74,22 @@ class Matrix(object):
def __or__(self, other):
"""Define inner product: <self|other>
"""
return other.__class__(np.dot(self._conjugate_transpose(), other.m))
m = np.dot(self._conjugate_transpose(), other.m)
try:
return self.__class__(m)
except:
try:
return other.__class__(m)
except:
...
return Matrix(m)
def __len__(self):
return len(self.m)
def outer(self, other):
"""Define outer product |0><0|"""
return self.__class__(np.outer(self.m, other.m))
return Matrix(np.outer(self.m, other.m))
def x(self, other):
"""Define outer product |0><0| looks like |0x0| which is 0.x(0)"""
@ -81,17 +102,32 @@ class Matrix(object):
return self.m.conjugate()
def conjugate_transpose(self):
return self.__class__(self._conjugate_transpose())
return Matrix(self._conjugate_transpose())
def complex_conjugate(self):
return self.__class__(self._complex_conjugate())
return Matrix(self._complex_conjugate())
class State(Matrix):
class Vector(Matrix):
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
super().__init__(m, *args, **kwargs)
if not self._is_vector():
raise TypeError("Not a vector")
def _is_vector(self):
return self.m.shape[1] == 1
class State(Vector):
def __init__(self, m: ListOrNdarray = None, name: str = '', *args, **kwargs):
"""An Operator turns one function into another"""
super().__init__(m)
"""State vector representing quantum state"""
super().__init__(m, *args, **kwargs)
self.name = name
if not self._is_normalized():
raise TypeError("Not a normalized state vector")
def _is_normalized(self):
return np.isclose(np.sum(np.abs(self.m ** 2)), 1.0)
@classmethod
def from_angles(cls, theta, phi):
@ -125,7 +161,16 @@ class State(Matrix):
def __repr__(self):
if self.name:
return '|{}>'.format(self.name)
return str(self.m)
for well_known_state in well_known_states:
if self == well_known_state:
return repr(well_known_state)
for used_state in UNIVERSE_STATES:
if self.m == used_state:
return repr(used_state)
next_state_sub = ''.join([REPR_MATH_SUBSCRIPT_NUMBERS[int(d)] for d in str(len(UNIVERSE_STATES))])
state_name = '|{}{}>'.format(REPR_GREEK_PSI, next_state_sub)
UNIVERSE_STATES.append(self.m)
return state_name
def norm(self):
"""Norm/Length of the vector = sqrt(<self|self>)"""
@ -164,7 +209,40 @@ class Operator(object):
return self.func(*args, **kwargs)
class UnitaryMatrix(Matrix):
class LinearOperator(Operator):
def __init__(self, func=None, *args, **kwargs):
"""Linear operators satisfy f(x+y) = f(x) + f(y) and a*f(x) = f(a*x)"""
super().__init__(func, *args, **kwargs)
if not self._is_linear():
raise TypeError("Not a linear operator")
def _is_linear(self):
# TODO: How to verify if the func is linear?
# in case of Unitary Operator, self.func is a lambda that takes a Matrix (assumes has .m component)
return True
# a, b = sympy.symbols('a, b')
# expr, vars_ = a+b, [a, b]
# for x in vars_:
# for y in vars_:
# try:
# if not sympy.Eq(sympy.diff(expr, x, y), 0):
# return False
# except TypeError:
# return False
# return True
class SquareMatrix(Matrix):
def __init__(self, m: ListOrNdarray, *args, **kwargs):
super().__init__(m, *args, **kwargs)
if not self._is_square():
raise TypeError("Not a Square matrix")
def _is_square(self):
return self.m.shape[0] == self.m.shape[1]
class UnitaryMatrix(SquareMatrix):
def __init__(self, m: ListOrNdarray, *args, **kwargs):
"""Represents a Unitary matrix that satisfies UU+ = I"""
super().__init__(m, *args, **kwargs)
@ -172,22 +250,22 @@ class UnitaryMatrix(Matrix):
raise TypeError("Not a Unitary matrix")
def _is_unitary(self):
"""Checks if the matrix is
1. square and
2. the product of itself with conjugate transpose is Identity UU+ = I"""
is_square = self.m.shape[0] == self.m.shape[1]
"""Checks if the matrix product of itself with conjugate transpose is Identity UU+ = I"""
UU_ = np.dot(self._conjugate_transpose(), self.m)
I = np.eye(self.m.shape[0])
return is_square and np.isclose(UU_, I).all()
return np.isclose(UU_, I).all()
class UnitaryOperator(Operator, UnitaryMatrix):
class UnitaryOperator(LinearOperator, UnitaryMatrix):
def __init__(self, m: ListOrNdarray, name: str = '', *args, **kwargs):
"""UnitaryOperator inherits from both Operator and a Unitary matrix
"""UnitaryOperator inherits from both LinearOperator and a Unitary matrix
It is used to act on a State vector by defining the operator to be the dot product"""
self.name = name
UnitaryMatrix.__init__(self, m=m, *args, **kwargs)
Operator.__init__(self, func=lambda other: State(np.dot(self.m, other.m)), *args, **kwargs)
LinearOperator.__init__(self, func=self.operator_func, *args, **kwargs)
def operator_func(self, other):
return State(np.dot(self.m, other.m))
def __repr__(self):
if self.name:
@ -195,6 +273,68 @@ class UnitaryOperator(Operator, UnitaryMatrix):
return str(self.m)
# TODO - How to add a CNOT gate to the Quantum Processor?
# Imagine if I have to act on a 3-qubit computer and CNOT(q1, q3)
#
# Decomposed CNOT :
# reverse engineered from
# https://quantumcomputing.stackexchange.com/questions/4252/how-to-derive-the-cnot-matrix-for-a-3-qbit-system-where-the-control-target-qbi
#
# CNOT(q1, I, q2):
# |0><0| x I_2 x I_2 + |1><1| x I_2 x X
# np.kron(np.kron(np.outer(_0.m, _0.m), np.eye(2)), np.eye(2)) + np.kron(np.kron(np.outer(_1.m, _1.m), np.eye(2)), X.m)
#
#
# CNOT(q1, q2):
# |0><0| x I + |1><1| x X
# np.kron(np.outer(_0.m, _0.m), np.eye(2)) + np.kron(np.outer(_1.m, _1.m), X.m)
# _0.x(_0) * Matrix(I.m) + _1.x(_1) * Matrix(X.m)
class TwoQubitPartial(object):
def __init__(self, rpr):
self.rpr = rpr
self.operator = None
def __repr__(self):
return str("-{}-".format(self.rpr))
C_ = TwoQubitPartial("C")
x_ = TwoQubitPartial("x")
class TwoQubitOperator(UnitaryOperator):
def __init__(self, m: ListOrNdarray, A: TwoQubitPartial, B: TwoQubitPartial,
A_p: UnitaryOperator, B_p: UnitaryOperator, *args, **kwargs):
super().__init__(m, *args, **kwargs)
A.operator, B.operator = self, self
self.A = A
self.B = B
self.A_p = A_p
self.B_p = B_p
def verify_step(self, step):
if not (step.count(self.A) == 1 and step.count(self.B) == 1):
raise RuntimeError("Both CONTROL and TARGET need to be defined in the same step exactly once")
def compose(self, step, state):
# TODO: Hacky way to do CNOT
# Should generalize for a 2-Qubit gate
# _0.x(_0) * Matrix(I.m) + _1.x(_1) * Matrix(X.m)
outer_0, outer_1 = [], []
for s in step:
if s == self.A:
outer_0.append(_0.x(_0))
outer_1.append(_1.x(_1))
elif s == self.B:
outer_0.append(Matrix(self.A_p.m))
outer_1.append(Matrix(self.B_p.m))
else:
outer_0.append(Matrix(s.m))
outer_1.append(Matrix(s.m))
return reduce((lambda x, y: x * y), outer_0) + reduce((lambda x, y: x * y), outer_1)
"""
Define States and Operators
"""
@ -207,9 +347,13 @@ _1 = State([[0],
[1]],
name='1')
_p = State([[1 / np.sqrt(2)], [1 / np.sqrt(2)]], name='+')
_p = State([[1 / np.sqrt(2)],
[1 / np.sqrt(2)]],
name='+')
_m = State([[1 / np.sqrt(2)], [-1 / np.sqrt(2)]], name='-')
_m = State([[1 / np.sqrt(2)],
[- 1 / np.sqrt(2)]],
name='-')
_00 = State([[1],
[0],
@ -223,6 +367,8 @@ _11 = State([[0],
[1]],
name='11')
well_known_states = [_0, _1, _p, _m]
_ = I = UnitaryOperator([[1, 0],
[0, 1]],
name="-")
@ -243,39 +389,16 @@ H = UnitaryOperator([[1 / np.sqrt(2), 1 / np.sqrt(2)],
[1 / np.sqrt(2), -1 / np.sqrt(2)], ],
name="H")
CNOT = UnitaryOperator([[1, 0, 0, 0],
CNOT = TwoQubitOperator([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0], ])
[0, 0, 1, 0], ],
TwoQubitPartial("C"),
TwoQubitPartial("x"),
I,
X)
# TODO - How to add a CNOT gate to the Quantum Processor?
# Imagine if I have to act on a 3-qubit computer and CNOT(q1, q3)
#
# Decomposed CNOT :
# reverse engineered from
# https://quantumcomputing.stackexchange.com/questions/4252/how-to-derive-the-cnot-matrix-for-a-3-qbit-system-where-the-control-target-qbi
#
# CNOT(q1, I, q2):
# |0><0| x I_2 x I_2 + |1><1| x I_2 x X
# np.kron(np.kron(np.outer(_0.m, _0.m), np.eye(2)), np.eye(2)) + np.kron(np.kron(np.outer(_1.m, _1.m), np.eye(2)), X.m)
#
#
# CNOT(q1, q2):
# |0><0| x I + |1><1| x X
# np.kron(np.outer(_0.m, _0.m), np.eye(2)) + np.kron(np.outer(_1.m, _1.m), X.m)
# _0.x(_0) * Matrix(I.m) + _1.x(_1) * Matrix(X.m)
class TwoQubitGate(object):
def __init__(self, rpr):
self.rpr = rpr
def __repr__(self):
return str("-{}-".format(self.rpr))
C = TwoQubitGate("C")
x = TwoQubitGate("x")
C, x = CNOT.A, CNOT.B
# TODO: End Hacky way to define 2-qbit gate
@ -283,8 +406,6 @@ x = TwoQubitGate("x")
def test():
_p = State([[1 / np.sqrt(2)], [1 / np.sqrt(2)]], name='+')
# Test properties of Hilbert vector space
# The four postulates of Quantum Mechanics
# I: States | Associated to any physical system is a complex vector space
@ -448,18 +569,11 @@ def naive_load_test(N):
gc.collect()
class QuantumProcessor(object):
HALT_STATE = "HALT"
RUNNING_STATE = "RUNNING"
class QuantumCircuit(object):
def __init__(self, n_qubits: int):
self.n_qubits = n_qubits
self.steps = [[_0 for _ in range(n_qubits)], ]
self._called_add_row = 0
self.current_step = 0
self.current_quantum_state = None
self.current_state = self.HALT_STATE
self.reset()
def add_row_step(self, row: int, step: int, qbit_state):
if len(self.steps) <= step:
@ -543,10 +657,60 @@ class QuantumProcessor(object):
print(line)
print("=" * 3 * len(self.steps))
class QuantumProcessor(object):
HALT_STATE = "HALT"
RUNNING_STATE = "RUNNING"
def __init__(self, circuit: QuantumCircuit):
self.circuit = circuit
self.c_step = 0
self.c_q_state = None
self.c_state = self.HALT_STATE
self.reset()
def compose_quantum_state(self, step):
if any([type(s) is TwoQubitPartial for s in step]):
two_qubit_gates = filter(lambda s: type(s) is TwoQubitPartial, step)
state = []
for two_qubit_gate in two_qubit_gates:
two_qubit_gate.operator.verify_step(step)
state = two_qubit_gate.operator.compose(step, state)
return state
return reduce((lambda x, y: x * y), step)
def step(self):
if self.c_step == 0 and self.c_state == self.HALT_STATE:
self.c_state = self.RUNNING_STATE
if self.c_step >= len(self.circuit.steps):
self.c_state = self.HALT_STATE
raise RuntimeWarning("Halted")
step_quantum_state = self.get_next_step()
if not self.c_q_state:
self.c_q_state = step_quantum_state
else:
self.c_q_state = State((step_quantum_state | self.c_q_state).m)
self.c_step += 1
def get_next_step(self):
running_step = self.circuit.steps[self.c_step]
step_quantum_state = self.compose_quantum_state(running_step)
return step_quantum_state
def run(self):
for _ in self.circuit.steps:
self.step()
self.c_state = self.HALT_STATE
def reset(self):
self.c_step = 0
self.c_q_state = None
self.c_state = self.HALT_STATE
def measure(self):
if self.current_state != self.HALT_STATE:
if self.c_state != self.HALT_STATE:
raise RuntimeError("Processor is still running")
return self.current_quantum_state.measure()
return self.c_q_state.measure()
def run_n(self, n: int):
for i in range(n):
@ -569,19 +733,19 @@ class QuantumProcessor(object):
def test_quantum_processor():
# Produce Bell state between 0 and 2 qubit
qp = QuantumProcessor(3)
qp.add_row([H, C])
qp.add_row([_, _])
qp.add_row([_, x])
qp.print()
qc = QuantumCircuit(3)
qc.add_row([H, C])
qc.add_row([_, _])
qc.add_row([_, x])
qc.print()
qp = QuantumProcessor(qc)
qp.get_sample(100)
if __name__ == "__main__":
test()
test_to_from_angles()
# test_quantum_processor()
test_quantum_processor()
# print(_1 | _0)
# qubit = _00 + _11
# print(qubit)