to from angles

This commit is contained in:
Daniel Tsvetkov 2020-01-29 13:49:40 +01:00
parent 53cf0674be
commit 104f3f9436
2 changed files with 100 additions and 1 deletions

25
06_krisis.py Normal file
View File

@ -0,0 +1,25 @@
import cirq
from math import pi
def superdense():
# Pick a qubit.
q0 = cirq.GridQubit(0, 0)
# Create a circuit
circuit = cirq.Circuit(
cirq.rx(pi/8).on(q0),
cirq.rz(pi/2).on(q0),
cirq.measure(q0, key='q0'),
)
print("Circuit:")
print(circuit)
simulator = cirq.Simulator()
result = simulator.run(circuit, repetitions=100)
print("Results:")
print(result)
if __name__ == "__main__":
superdense()

View File

@ -93,6 +93,35 @@ class State(Matrix):
super().__init__(m)
self.name = name
@classmethod
def from_angles(cls, theta, phi):
m0 = np.cos(theta / 2)
m1 = np.sin(theta / 2) * np.power(np.e, (1j * phi))
m = m0 * _0 + m1 * _1
return cls(m.m)
def to_angles(self):
if not self.m.shape == (2, 1):
raise Exception("State needs to be 2x1 matrix")
m0, m1 = self.m[0][0], self.m[1][0]
# theta is between 0 and pi
theta = 2 * np.arccos(m0)
if theta < 0:
theta += np.pi
assert 0 <= theta <= np.pi
div = np.sin(theta/2)
if div == 0:
phi = 0
else:
exp = m1 / div
phi = np.log(complex(exp)) / 1j
if phi < 0:
phi += 2 * np.pi
assert 0 <= phi <= 2 * np.pi
return theta, phi
def __repr__(self):
if self.name:
return '|{}>'.format(self.name)
@ -178,6 +207,22 @@ _1 = State([[0],
[1]],
name='1')
_p = State([[1 / np.sqrt(2)], [1 / np.sqrt(2)]], name='+')
_m = State([[1 / np.sqrt(2)], [-1 / np.sqrt(2)]], name='-')
_00 = State([[1],
[0],
[0],
[0]],
name='00')
_11 = State([[0],
[0],
[0],
[1]],
name='11')
_ = I = UnitaryOperator([[1, 0],
[0, 1]],
name="-")
@ -232,6 +277,7 @@ class TwoQubitGate(object):
C = TwoQubitGate("C")
x = TwoQubitGate("x")
# TODO: End Hacky way to define 2-qbit gate
###########################################################
@ -338,6 +384,26 @@ def test():
[0, 1]])
def test_to_from_angles():
for q in [_0, _1, _p, _m]:
angles = q.to_angles()
s = State.from_angles(*angles)
assert q == s
assert State.from_angles(0, 0) == _0
assert State.from_angles(np.pi, 0) == _1
assert State.from_angles(np.pi / 2, 0) == _p
assert State.from_angles(np.pi / 2, np.pi) == _m
for theta, phi, qbit in [
(0, 0, _0),
(np.pi, 0, _1),
(np.pi / 2, 0, _p),
(np.pi / 2, np.pi, _m),
]:
s = State.from_angles(theta, phi)
assert s == qbit
def naive_load_test(N):
import os
import psutil
@ -513,4 +579,12 @@ def test_quantum_processor():
if __name__ == "__main__":
test()
test_quantum_processor()
test_to_from_angles()
# test_quantum_processor()
# print(_1 | _0)
# qubit = _00 + _11
# print(qubit)
# bell = CNOT.on(qubit)
# HI = I*H
# print(bell)