78 lines
2.1 KiB
Python
78 lines
2.1 KiB
Python
|
import numpy as np
|
||
|
from qiskit import (
|
||
|
QuantumCircuit,
|
||
|
execute,
|
||
|
Aer)
|
||
|
from qiskit.visualization import plot_histogram, plot_bloch_vector
|
||
|
from matplotlib import pyplot as plt
|
||
|
from collections import defaultdict
|
||
|
|
||
|
# Use Aer's qasm_simulator
|
||
|
simulator = Aer.get_backend('qasm_simulator')
|
||
|
|
||
|
|
||
|
def create_bloch_vector(theta, phi):
|
||
|
x = np.sin(theta) * np.cos(phi)
|
||
|
y = np.sin(theta) * np.sin(phi)
|
||
|
z = np.cos(theta)
|
||
|
return [x, y, z]
|
||
|
|
||
|
|
||
|
def perform_exp(iterations, case, draw=False):
|
||
|
simulator = Aer.get_backend('qasm_simulator')
|
||
|
all_counts = defaultdict(int)
|
||
|
|
||
|
for i in range(iterations):
|
||
|
qc = QuantumCircuit(2, 2)
|
||
|
|
||
|
# uniform distribution on the sphere
|
||
|
t = round(np.random.uniform(0, 1), 10)
|
||
|
theta = np.arccos(1 - 2 * t)
|
||
|
phi = round(np.random.uniform(0, 2 * np.pi), 10)
|
||
|
|
||
|
CASE_ANGLES = {
|
||
|
'identical': (theta, phi),
|
||
|
'orthogonal': (theta + np.pi, phi)
|
||
|
}
|
||
|
|
||
|
qc.r(theta, phi, 0)
|
||
|
theta1, phi1 = CASE_ANGLES[case]
|
||
|
qc.r(theta1, phi1, 1)
|
||
|
|
||
|
# print(theta, phi, phi1)
|
||
|
|
||
|
if draw:
|
||
|
q0 = create_bloch_vector(theta, phi)
|
||
|
plot_bloch_vector(q0)
|
||
|
plt.show()
|
||
|
q1 = create_bloch_vector(theta1, phi1)
|
||
|
plot_bloch_vector(q1)
|
||
|
plt.show()
|
||
|
|
||
|
# Measure in the Bell's basis
|
||
|
qc.cx(0, 1)
|
||
|
qc.h(0)
|
||
|
qc.measure([0, 1], [0, 1])
|
||
|
|
||
|
# print(qc)
|
||
|
|
||
|
# execute the job
|
||
|
job = execute(qc, simulator, shots=1)
|
||
|
result = job.result()
|
||
|
counts = result.get_counts(qc)
|
||
|
|
||
|
for k, v in counts.items():
|
||
|
all_counts[k] += v
|
||
|
|
||
|
# gather all counts
|
||
|
print("\nTotal counts for experiment '{}' are:\n".format(case))
|
||
|
for k, v in sorted(all_counts.items(), key=lambda x: x[0]):
|
||
|
print("{}: {}".format(k, v))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
# draw produces a Bloch sphere but does not work in this notebook
|
||
|
|
||
|
perform_exp(iterations=100, case='identical', draw=False) # same state
|
||
|
perform_exp(iterations=100, case='orthogonal', draw=False) # different orthogonal states
|