quantum/lib_q_computer_math.py

591 lines
19 KiB
Python
Raw Normal View History

from __future__ import annotations
2019-12-17 21:56:11 +01:00
import random
from collections import defaultdict
from functools import reduce
from typing import Union
import numpy as np
from numbers import Complex
from load_test import sizeof_fmt
ListOrNdarray = Union[list, np.ndarray]
class Matrix(object):
"""Represents a quantum state as a vector in Hilbert space"""
def __init__(self, m: ListOrNdarray = None, *args, **kwargs):
"""
Can be initialized with a matrix, e.g. for |0> this is [[0],[1]]
:param m: a matrix representing the quantum state
:param name: the name of the state (optional)
"""
if m is None:
self.m = np.array([])
elif type(m) is list:
self.m = np.array(m)
elif type(m) is np.ndarray:
self.m = m
else:
raise TypeError("m needs to be a list or ndarray type")
def __add__(self, other):
return other.__class__(self.m + other.m)
def __eq__(self, other):
if isinstance(other, Complex):
return bool(np.allclose(self.m, other))
2019-12-17 21:56:11 +01:00
elif isinstance(other, TwoQubitGate):
return False
return np.allclose(self.m, other.m)
def __mul_or_kron__(self, other):
"""
Multiplication with a number is Linear op;
with another state is a composition via the Kronecker/Tensor product
"""
if isinstance(other, Complex):
return self.__class__(self.m * other)
elif isinstance(other, Matrix):
return other.__class__(np.kron(self.m, other.m))
raise NotImplementedError
def __rmul__(self, other):
return self.__mul_or_kron__(other)
def __mul__(self, other):
return self.__mul_or_kron__(other)
def __or__(self, other):
"""Define inner product: <self|other>
"""
return other.__class__(np.dot(self._conjugate_transpose(), other.m))
def __len__(self):
return len(self.m)
2019-12-17 21:56:11 +01:00
def outer(self, other):
"""Define outer product |0><0|"""
return self.__class__(np.outer(self.m, other.m))
def x(self, other):
"""Define outer product |0><0| looks like |0x0| which is 0.x(0)"""
return self.outer(other)
def _conjugate_transpose(self):
return self.m.transpose().conjugate()
def _complex_conjugate(self):
return self.m.conjugate()
def conjugate_transpose(self):
2019-12-17 21:56:11 +01:00
return self.__class__(self._conjugate_transpose())
def complex_conjugate(self):
2019-12-17 21:56:11 +01:00
return self.__class__(self._complex_conjugate())
class State(Matrix):
def __init__(self, m: ListOrNdarray = None, name: str = '', *args, **kwargs):
"""An Operator turns one function into another"""
super().__init__(m)
self.name = name
2020-01-29 13:49:40 +01:00
@classmethod
def from_angles(cls, theta, phi):
m0 = np.cos(theta / 2)
m1 = np.sin(theta / 2) * np.power(np.e, (1j * phi))
m = m0 * _0 + m1 * _1
return cls(m.m)
def to_angles(self):
if not self.m.shape == (2, 1):
raise Exception("State needs to be 2x1 matrix")
m0, m1 = self.m[0][0], self.m[1][0]
# theta is between 0 and pi
theta = 2 * np.arccos(m0)
if theta < 0:
theta += np.pi
assert 0 <= theta <= np.pi
div = np.sin(theta/2)
if div == 0:
phi = 0
else:
exp = m1 / div
phi = np.log(complex(exp)) / 1j
if phi < 0:
phi += 2 * np.pi
assert 0 <= phi <= 2 * np.pi
return theta, phi
def __repr__(self):
if self.name:
return '|{}>'.format(self.name)
return str(self.m)
def norm(self):
"""Norm/Length of the vector = sqrt(<self|self>)"""
return self.length()
def length(self):
"""Norm/Length of the vector = sqrt(<self|self>)"""
return np.sqrt((self | self).m).item(0)
def is_orthogonal(self, other):
"""If the inner (dot) product is zero, this vector is orthogonal to other"""
return self | other == 0
2019-12-17 21:56:11 +01:00
def get_prob(self, j):
"""pr(j) = |<e_j|self>|^2"""
# j_th basis vector
e_j = State([[1] if i == int(j) else [0] for i in range(len(self.m))])
return np.absolute((e_j | self).m.item(0)) ** 2
2019-12-17 21:56:11 +01:00
def measure(self):
weights = [self.get_prob(j) for j in range(len(self))]
format_str = "{:0" + str(int(np.ceil(np.log2(len(weights))))) + "b}"
choices = [format_str.format(i) for i in range(len(weights))]
return random.choices(choices, weights)[0]
class Operator(object):
def __init__(self, func=None, *args, **kwargs):
"""An Operator turns one function into another"""
self.func = func
def on(self, *args, **kwargs):
return self(*args, **kwargs)
def __call__(self, *args, **kwargs):
return self.func(*args, **kwargs)
class UnitaryMatrix(Matrix):
def __init__(self, m: ListOrNdarray, *args, **kwargs):
"""Represents a Unitary matrix that satisfies UU+ = I"""
super().__init__(m, *args, **kwargs)
if not self._is_unitary():
raise TypeError("Not a Unitary matrix")
def _is_unitary(self):
"""Checks if the matrix is
1. square and
2. the product of itself with conjugate transpose is Identity UU+ = I"""
is_square = self.m.shape[0] == self.m.shape[1]
UU_ = np.dot(self._conjugate_transpose(), self.m)
I = np.eye(self.m.shape[0])
return is_square and np.isclose(UU_, I).all()
class UnitaryOperator(Operator, UnitaryMatrix):
def __init__(self, m: ListOrNdarray, name: str = '', *args, **kwargs):
"""UnitaryOperator inherits from both Operator and a Unitary matrix
It is used to act on a State vector by defining the operator to be the dot product"""
2019-12-17 21:56:11 +01:00
self.name = name
UnitaryMatrix.__init__(self, m=m, *args, **kwargs)
Operator.__init__(self, func=lambda other: State(np.dot(self.m, other.m)), *args, **kwargs)
2019-12-17 21:56:11 +01:00
def __repr__(self):
if self.name:
return '-{}-'.format(self.name)
return str(self.m)
"""
Define States and Operators
"""
_0 = State([[1],
[0]],
name='0')
_1 = State([[0],
[1]],
name='1')
2020-01-29 13:49:40 +01:00
_p = State([[1 / np.sqrt(2)], [1 / np.sqrt(2)]], name='+')
_m = State([[1 / np.sqrt(2)], [-1 / np.sqrt(2)]], name='-')
_00 = State([[1],
[0],
[0],
[0]],
name='00')
_11 = State([[0],
[0],
[0],
[1]],
name='11')
2019-12-17 21:56:11 +01:00
_ = I = UnitaryOperator([[1, 0],
[0, 1]],
name="-")
X = UnitaryOperator([[0, 1],
[1, 0]],
name="X")
Y = UnitaryOperator([[0, -1j],
[1j, 0]],
name="Y")
Z = UnitaryOperator([[1, 0],
[0, -1]],
name="Z")
H = UnitaryOperator([[1 / np.sqrt(2), 1 / np.sqrt(2)],
[1 / np.sqrt(2), -1 / np.sqrt(2)], ],
name="H")
CNOT = UnitaryOperator([[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
[0, 0, 1, 0], ])
# TODO - How to add a CNOT gate to the Quantum Processor?
# Imagine if I have to act on a 3-qubit computer and CNOT(q1, q3)
#
# Decomposed CNOT :
# reverse engineered from
# https://quantumcomputing.stackexchange.com/questions/4252/how-to-derive-the-cnot-matrix-for-a-3-qbit-system-where-the-control-target-qbi
#
# CNOT(q1, I, q2):
# |0><0| x I_2 x I_2 + |1><1| x I_2 x X
# np.kron(np.kron(np.outer(_0.m, _0.m), np.eye(2)), np.eye(2)) + np.kron(np.kron(np.outer(_1.m, _1.m), np.eye(2)), X.m)
#
#
# CNOT(q1, q2):
# |0><0| x I + |1><1| x X
# np.kron(np.outer(_0.m, _0.m), np.eye(2)) + np.kron(np.outer(_1.m, _1.m), X.m)
# _0.x(_0) * Matrix(I.m) + _1.x(_1) * Matrix(X.m)
class TwoQubitGate(object):
def __init__(self, rpr):
self.rpr = rpr
def __repr__(self):
return str("-{}-".format(self.rpr))
C = TwoQubitGate("C")
x = TwoQubitGate("x")
2020-01-29 13:49:40 +01:00
2019-12-17 21:56:11 +01:00
# TODO: End Hacky way to define 2-qbit gate
###########################################################
def test():
_p = State([[1 / np.sqrt(2)], [1 / np.sqrt(2)]], name='+')
# Test properties of Hilbert vector space
# The four postulates of Quantum Mechanics
# I: States | Associated to any physical system is a complex vector space
# known as the state space of the system. If the system is closed
# then the system is described completely by its state vector
# which is a unit vector in the space.
# Mathematically, this vector space is also a function space
assert _0 + _1 == _1 + _0 # commutativity of vector addition
assert _0 + (_1 + _p) == (_0 + _1) + _p # associativity of vector addition
assert 8 * (_0 + _1) == 8 * _0 + 8 * _1 # Linear when multiplying by constants
assert _0 | _0 == 1 # parallel have 1 product
assert _0 | _1 == 0 # orthogonal have 0 product
assert _0.is_orthogonal(_1)
assert _1 | (8 * _0) == 8 * (_1 | _0) # Inner product is linear multiplied by constants
assert _p | (_1 + _0) == (_p | _1) + (_p | _0) # Inner product is linear in superpos of vectors
assert np.isclose(_1.length(), 1.0) # all of the vector lengths are normalized
assert np.isclose(_0.length(), 1.0)
assert np.isclose(_p.length(), 1.0)
assert _0 | _1 == (_1 | _0).complex_conjugate() # non-commutative inner product
# II: Dynamics | The evolution of a closed system is described by a unitary transformation
#
# Operators turn one vector into another
# the times 2 operator should return the times two multiplication
_times_2 = Operator(lambda x: 2 * x)
assert _times_2.on(5) == 10
assert _times_2(5) == 10
2019-12-17 21:56:11 +01:00
# Pauli X gate flips the |0> to |1> and the |1> to |0>
assert X | _1 == _0
assert X | _0 == _1
# Test the Y Pauli operator with complex number literal notation
assert Y | _0 == State([[0],
[1j]])
assert Y | _1 == State([[-1j],
[0]])
# III: Measurement | A quantum measurement is described by an orthonormal basis |e_j>
# for state space. If the initial state of the system is |psi>
# then we get outcome j with probability pr(j) = |<e_j|psi>|^2
2019-12-17 21:56:11 +01:00
assert _0.get_prob(0) == 1 # Probability for |0> in 0 is 1
assert _0.get_prob(1) == 0 # Probability for |0> in 1 is 0
2019-12-17 21:56:11 +01:00
assert _1.get_prob(0) == 0 # Probability for |1> in 0 is 0
assert _1.get_prob(1) == 1 # Probability for |1> in 1 is 1
2019-12-17 21:56:11 +01:00
assert np.isclose(_p.get_prob(0), 0.5) # Probability for |+> in 0 is 0.5
assert np.isclose(_p.get_prob(1), 0.5) # Probability for |+> in 1 is 0.5
# IV: Compositing | tensor/kronecker product when composing
assert _0 * _0 == State([[1], [0], [0], [0]])
assert _0 * _1 == State([[0], [1], [0], [0]])
assert _1 * _0 == State([[0], [0], [1], [0]])
assert _1 * _1 == State([[0], [0], [0], [1]])
# CNOT applies a control qubit on a target.
# If the control is a |0>, target remains unchanged.
# If the control is a |1>, target is flipped.
assert CNOT.on(_0 * _0) == _0 * _0
assert CNOT.on(_0 * _1) == _0 * _1
assert CNOT.on(_1 * _0) == _1 * _1
assert CNOT.on(_1 * _1) == _1 * _0
# ALL FOUR NOW - Create a Bell state (I) that has H|0> (II), measures (III) and composition in CNOT (IV)
# Bell state
# First - create a superposition
H = UnitaryOperator([[1 / np.sqrt(2), 1 / np.sqrt(2)],
[1 / np.sqrt(2), -1 / np.sqrt(2)], ])
superpos = H | _0
assert superpos == _p
# Then CNOT the superposition with a |0> qubit
bell = CNOT | (superpos * _0)
assert bell == State([[1 / np.sqrt(2)],
[0.],
[0.],
[1 / np.sqrt(2)], ])
2019-12-17 21:56:11 +01:00
assert np.isclose(bell.get_prob(0b00), 0.5) # Probability for bell in 00 is 0.5
assert np.isclose(bell.get_prob(0b01), 0) # Probability for bell in 01 is 0.
assert np.isclose(bell.get_prob(0b10), 0) # Probability for bell in 10 is 0.
assert np.isclose(bell.get_prob(0b11), 0.5) # Probability for bell in 11 is 0.5
################################
# TODO: Don't know where outer product fits...
assert _0.x(_0) == Matrix([[1, 0],
[0, 0]])
assert _0.x(_1) == Matrix([[0, 1],
[0, 0]])
assert _1.x(_0) == Matrix([[0, 0],
[1, 0]])
assert _1.x(_1) == Matrix([[0, 0],
[0, 1]])
2020-01-29 13:49:40 +01:00
def test_to_from_angles():
for q in [_0, _1, _p, _m]:
angles = q.to_angles()
s = State.from_angles(*angles)
assert q == s
assert State.from_angles(0, 0) == _0
assert State.from_angles(np.pi, 0) == _1
assert State.from_angles(np.pi / 2, 0) == _p
assert State.from_angles(np.pi / 2, np.pi) == _m
for theta, phi, qbit in [
(0, 0, _0),
(np.pi, 0, _1),
(np.pi / 2, 0, _p),
(np.pi / 2, np.pi, _m),
]:
s = State.from_angles(theta, phi)
assert s == qbit
def naive_load_test(N):
import os
import psutil
import gc
from time import time
from sys import getsizeof
print("{:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10}".format(
"qbits",
"kron_len",
"mem_used",
"mem_per_q",
"getsizeof",
"getsiz/len",
"nbytes",
"nbytes/len",
"time"))
_0 = State([[1], [0]], name='0')
process = psutil.Process(os.getpid())
mem_init = process.memory_info().rss
for i in range(2, N + 1):
start = time()
m = _0
for _ in range(i):
m = m * _0
len_m = len(m)
elapsed = time() - start
mem_b = process.memory_info().rss - mem_init
print("{:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10} {:>10}".format(
i,
len(m),
sizeof_fmt(mem_b),
sizeof_fmt(mem_b / len_m),
sizeof_fmt(getsizeof(m)),
sizeof_fmt(getsizeof(m) / len_m),
sizeof_fmt(m.m.nbytes),
sizeof_fmt(m.m.nbytes / len_m),
np.round(elapsed, 2)))
gc.collect()
2019-12-17 21:56:11 +01:00
class QuantumProcessor(object):
HALT_STATE = "HALT"
RUNNING_STATE = "RUNNING"
def __init__(self, n_qubits: int):
self.n_qubits = n_qubits
self.steps = [[_0 for _ in range(n_qubits)], ]
self._called_add_row = 0
self.current_step = 0
self.current_quantum_state = None
self.current_state = self.HALT_STATE
self.reset()
def add_row_step(self, row: int, step: int, qbit_state):
if len(self.steps) <= step:
self.steps += [[I for _ in range(self.n_qubits)] for _ in range(len(self.steps) - step + 1)]
self.steps[step][row] = qbit_state
def add_step(self, step_data: list):
if len(step_data) != self.n_qubits:
raise RuntimeError("Length of step is: {}, should be: {}".format(len(step_data), self.n_qubits))
step_i = len(step_data)
for row, qubit_state in enumerate(step_data):
self.add_row_step(row, step_i, qubit_state)
def add_steps(self, steps_data: list):
for step_data in steps_data:
self.add_step(step_data)
def add_row(self, row_data: list):
if self._called_add_row >= self.n_qubits:
raise RuntimeError("Adding more rows than qubits")
for step_i, qubit_state in enumerate(row_data):
self.add_row_step(self._called_add_row, step_i + 1, qubit_state)
self._called_add_row += 1
def add_rows(self, rows_data: list):
for row_data in rows_data:
self.add_row(row_data)
def compose_quantum_state(self, step):
if C in step or x in step:
if not (step.count(C) == 1 and step.count(x) == 1):
raise RuntimeError("Both CONTROL and TARGET need to be defined in the same step exactly once")
# TODO: Hacky way to do CNOT
# Should generalize for a 2-Qubit gate
# _0.x(_0) * Matrix(I.m) + _1.x(_1) * Matrix(X.m)
outer_0, outer_1 = [], []
for s in step:
if s == C:
outer_0.append(_0.x(_0))
outer_1.append(_1.x(_1))
elif s == x:
outer_0.append(Matrix(I.m))
outer_1.append(Matrix(X.m))
else:
outer_0.append(Matrix(s.m))
outer_1.append(Matrix(s.m))
return reduce((lambda x, y: x * y), outer_0) + reduce((lambda x, y: x * y), outer_1)
return reduce((lambda x, y: x * y), step)
def step(self):
if self.current_step == 0 and self.current_state == self.HALT_STATE:
self.current_state = self.RUNNING_STATE
if self.current_step >= len(self.steps):
self.current_state = self.HALT_STATE
raise RuntimeWarning("Halted")
running_step = self.steps[self.current_step]
step_quantum_state = self.compose_quantum_state(running_step)
if not self.current_quantum_state:
self.current_quantum_state = step_quantum_state
else:
self.current_quantum_state = step_quantum_state | self.current_quantum_state
self.current_step += 1
def run(self):
for _ in self.steps:
self.step()
self.current_state = self.HALT_STATE
def reset(self):
self.current_step = 0
self.current_quantum_state = None
self.current_state = self.HALT_STATE
def print(self):
print("=" * 3 * len(self.steps))
for line_no in range(self.n_qubits):
line = ''
for step in self.steps:
state_repr = repr(step[line_no])
line += state_repr
print(line)
print("=" * 3 * len(self.steps))
def measure(self):
if self.current_state != self.HALT_STATE:
raise RuntimeError("Processor is still running")
return self.current_quantum_state.measure()
def run_n(self, n: int):
for i in range(n):
self.run()
result = self.measure()
print("Run {}: {}".format(i, result))
self.reset()
def get_sample(self, n: int):
rv = defaultdict(int)
for i in range(n):
self.run()
result = self.measure()
rv[result] += 1
self.reset()
for k, v in sorted(rv.items(), key=lambda x: x[0]):
print("{}: {}".format(k, v))
return rv
def test_quantum_processor():
# Produce Bell state between 0 and 2 qubit
qp = QuantumProcessor(3)
qp.add_row([H, C])
qp.add_row([_, _])
qp.add_row([_, x])
qp.print()
qp.get_sample(100)
if __name__ == "__main__":
2019-12-17 21:56:11 +01:00
test()
2020-01-29 13:49:40 +01:00
test_to_from_angles()
# test_quantum_processor()
# print(_1 | _0)
# qubit = _00 + _11
# print(qubit)
# bell = CNOT.on(qubit)
# HI = I*H
# print(bell)