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Abstract

A critical milestone on the path to useful quantum computers is quantum supremacy – a demonstra-
tion of a quantum computation that is prohibitively hard for classical computers. A leading near-term
candidate, put forth by the Google/UCSB team, is sampling from the probability distributions of ran-
domly chosen quantum circuits, which we call Random Circuit Sampling (RCS).

In this paper we study both the hardness and verification of RCS. While RCS was defined with
experimental realization in mind, we show complexity theoretic evidence of hardness that is on par
with the strongest theoretical proposals for supremacy. Specifically, we show that RCS satisfies an
average-case hardness condition – computing output probabilities of typical quantum circuits is as hard
as computing them in the worst-case, and therefore #P-hard. Our reduction exploits the polynomial
structure in the output amplitudes of random quantum circuits, enabled by the Feynman path integral.
In addition, it follows from known results that RCS satisfies an anti-concentration property, making it
the first supremacy proposal with both average-case hardness and anti-concentration.

1 Introduction

In the early 1990’s, complexity-theoretic techniques provided the first theoretical demonstrations that quan-
tum computers have the potential to solve certain computational problems exponentially faster than classical
computers [BV93, Sim94]. These paved the way for remarkable results showing that fully fault-tolerant, scal-
able quantum computers will be able to quickly factor large integers [Sho99], as well as simulate quantum
mechanical systems [Fey82, Llo96]. While quantum devices capable of solving such important problems may
still be far off, decades of work undertaken toward building scalable quantum computers have already yielded
considerable progress in high-precision control over quantum systems. Indeed, at present, several concurrent
experimental efforts from groups in industry and academia such as Google, IBM, and the University of Mary-
land have already reached the point where systems of around 50 high-quality qubits are within experimental
reach [MRN+17, KMT+17, ZPH+17].

As we approach this so-called Noisy Intermediate Scale era of Quantum computing (or “NISQ” [Pre18]),
a key milestone will be quantum supremacy: the quest to perform a computational task that can be solved
by these systems but cannot be solved in a reasonable amount of time by any classical means. Akin to the
early demonstrations of the power of quantum computers, there is no requirement that the computational
task be useful – the main additional requirement is that the task should be physically realizable in the near
term.
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Broadly speaking, we can classify quantum supremacy proposals into two categories – those seeking to
provide very strong complexity-theoretic evidence of classical intractability while hoping to be physically
realized in the near term, versus those with excellent prospects for physical realization in the short term
while providing weaker evidence of classical intractability. This paper shows that these categories intersect
by providing strong complexity-theoretic evidence of classical intractability for the leading candidate from
the latter category.

More specifically, the first category of quantum supremacy proposals had their origins in the desire to
obtain strong complexity-theoretic evidence of the power of quantum computers. A key insight was that fo-
cusing on the probability distributions quantum devices can sample from, rather than more standard notions
of computing or optimizing functions, opens up the possibility of strong evidence of classical intractability.
This perspective led to proposals such as BosonSampling [AA11] and IQP [BJS10], together with proofs that
the probabilities of particular quantum outcomes correspond to quantities which are difficult to compute
– such as matrix permanents. This allowed them to connect the hardness of classical simulation of such
systems to well-supported hardness assumptions stemming from complexity theory.

As an added bonus, Aaronson and Arkhipov realized that BosonSampling might be experimentally fea-
sible in the near term, and helped jump-start the quest for quantum supremacy more than half a decade
ago [SMH+12, BFRK+13, TDH+13, COR+13]. More recently, BosonSampling experiments have faced ex-
perimental difficulties with photon generation and detector efficiency, making it challenging to push these
experiments to the scale required to achieve supremacy (∼ 50 photons) [NSC+17, CC18]. It remains to be
seen if such experiments can be implemented in the near future.

The second category of supremacy results is directly inspired by the dramatic experimental progress in
building high-quality superconducting qubits (e.g., [BIS+16, MRN+17]). These groups defined the natural
sampling task for their experimental context, which we call Random Circuit Sampling (RCS). The task
is to take a random (efficient) quantum circuit of a specific form and generate samples from its output
distribution. While RCS lacks some of the complexity-theoretic evidence that made BosonSampling so
theoretically compelling, this proposal promises to be more readily scaled to larger system sizes in the near
term. In particular, the group at Google/UCSB plans to conduct such an experiment on a 2D array of 49
qubits by the end of 2018 [Mar18].

Our main result gives strong complexity-theoretic support to this experimentally driven proposal. In
technical terms, this involves developing the first worst-to-average-case reduction for computing the output
probabilities of random quantum circuits. That is, we prove that the ability to compute the output prob-
ability of a typical quantum circuit is as hard as computing the probability of a worst-case circuit1. This
is a necessary requirement to show hardness for random circuit sampling along the same lines as Boson-
Sampling. Taken in combination with recent results establishing a subsequent piece of evidence known as
anti-concentration for these systems [BH13, HBVSE17], this puts RCS on par with the strongest theoretical
proposals for supremacy.

Ideally, one would like to tie this complexity-theoretic evidence directly to the actual statistical tests
used to verify experimental devices. One might hope that the leading candidate measure for verifying RCS,
cross-entropy, would certify closeness in total variation distance2, the metric needed for the arguments above.
Unfortunately, there are simple counterexample distributions that score well on cross-entropy yet are far from
ideal in total variation distance. In Section 3, we highlight these and other examples that help clarify some
of the challenges in tying such statistical tests to complexity theoretic evidence. We note that this remains
an open question for any supremacy proposal, including BosonSampling.

2 Our results: average-case hardness

Proposals for quantum supremacy have a common framework. The computational task is to sample from the
output distribution D of some experimentally feasible quantum process or algorithm (on some given input).
To establish quantum supremacy we must show

1To be more precise our reduction will work with respect to a natural discretized analog of the Haar measure.
2Specifically, cross-entropy is closely related to KL divergence, which is a known upper bound on total variation distance.
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1. Hardness : no efficient classical algorithm can sample from any distribution close to D, and

2. Verification: an algorithm can check that the experimental device sampled from an output distribution
close to D.

This need for verifiability effectively imposes a robustness condition on the difficulty of sampling from
D. For example, the ability to sample one particular output x of a quantum circuit with the correct
probability D(x) is known to be hard for classical computers, under standard complexity assumptions, e.g.
[TD04, BJS10, MFF14, FH16, BMZ16]. But this is not a convincing proof of supremacy – for one, under any
reasonable noise model, this single output probability D(x) might not be preserved. Moreover, this single
output x is exponentially unlikely to occur – and would therefore be extremely difficult to verify. Accordingly,
any convincing proof of quantum supremacy must establish that D is actually uniformly difficult to sample
from. That is, the computational difficulty must be embedded across the entire distribution, rather than
concentrated in a single output.

The starting point for the BosonSampling proposal of Aaronson and Arkhipov consisted of three observa-
tions: (1) In general, for sufficiently hard problems (think #P-hard), showing a distribution D is uniformly
difficult to sample from corresponds to showing that for most outputs x, it is hard to compute D(x). In
complexity theory, this is referred to as “average-case” rather than “worst-case” hardness. (2) The output
probabilities of systems of noninteracting bosons can be expressed as permanents of certain n× n matrices.
(3) By a celebrated result of Lipton [Lip91], computing permanents of random matrices is #P-hard, or truly
intractable in the complexity theory pantheon. Together, these gave convincing evidence of the hardness
of sampling typical outputs of a suitable system of noninteracting bosons, which could be experimentally
feasible in the near term.

Specifically they proved that no classical computer can sample from any distribution within inverse-
exponential total variation distance of the ideal BosonSampling output distribution. Formally extending
these results to experimentally relevant noise models, such as constant total variation distance, seems to
require approximation robust worst-to-average-case reductions that are beyond the reach of current methods.
Nevertheless, their results, combined with the average-case hardness of the permanent, provide compelling
evidence that BosonSampling has such robust hardness.

Permanents have a special structure enabling their average-case hardness – an ingredient which is thus far
missing in other supremacy proposals. Technically, average-case hardness is established by creating a “worst-
to-average-case reduction”. We will show such a reduction for RCS. At a high level, this involves showing
that the value on a worst-case instance x can be efficiently inferred from the values at a few random instances
r1, . . . , rm. For this to be possible at all, while the rk might be individually random, their correlations must
depend upon x (which we shall denote by r0). Typically such reductions rely on a deep global structure of
the problem, which makes it possible to write the value at rk as a polynomial in k of degree at most m. For
example, the average-case property of permanents is enabled by its algebraic structure – the permanent of
an n× n matrix can be expressed as a low degree polynomial in its entries. This allows the value at r0 = x
to be computed from the values at rk by polynomial interpolation.

An astute reader may have noticed that randomizing the instance of permanent corresponds to starting
with a random linear-optical network for the BosonSampling experiment, but still focusing on a fixed output.
Our goal however was to show for a fixed experiment that it is hard to calculate the probability of a random
output. These are equivalent by a technique called “hiding”. By the same token, it suffices for RCS to show
that it is hard to compute the probability of a fixed output, 0, for a random circuit C.

To show this average-case hardness for quantum circuits, we start with the observation that the probability
with which a quantum circuit outputs a fixed outcome x can be expressed as a low degree multivariate
polynomial in the parameters describing the gates of the circuit, thanks to writing the acceptance probability
as a Feynman path integral. Unfortunately, this polynomial representation of the output probability does
not immediately yield a worst-to-average-case reduction. At its core, the difficulty is that we are not looking
for structure in an individual instance – such as the polynomial description of the output probability for a
particular circuit above. Rather, we would like to say that several instances of the problem are connected in
some way, specifically by showing that the outputs of several different related circuits are described by a low
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degree (univariate) polynomial. With permanents, this connection is established using the linear structure
of matrices, but quantum circuits do not have a linear structure, i.e. if A and B are unitary matrices, then
A+B is not necessarily unitary. This limitation means one cannot directly adapt the proof of average-case
hardness for the permanent to make use of the Feynman path integral polynomial.

Here is a more sophisticated attempt to connect up the outputs of different circuits with a polynomial:
Suppose we take a worst-case circuit G = Gm . . . G1, and multiply each gate Gj by a Haar-random matrix
Hj . By the invariance of the Haar measure, this is another random circuit – it is now totally scrambled. Now
we invoke a unique feature of quantum computation, which is that it is possible to implement a fraction of a
quantum gate. This allows us to replace each gate Hj with Hje

−iθhj , where hj = −i logHj and θ is a small
angle, resulting in a new circuit G(θ). If θ = 1 this gives us back the worst-case circuit G(1) = G, but if θ is
very tiny the resulting circuit looks almost uniformly random. One might now hope to interpolate the value
of G(1) from the values of G(θk) for many small values of θk, thus effecting a worst-to-average reduction.
Unfortunately, this doesn’t work either. The problem is that e−iθhj is not a low degree polynomial in θ, and
therefore neither is G(θ), so we have nothing to interpolate with.

The third attempt, which works, is to consider using a truncated Taylor series of e−iθhj in place of e−iθhj

in the above construction. The values of the probabilities in this truncation will be very close to those
of the proposal above – and yet by construction we have ensured our output probabilities are low degree
polynomials in theta. Therefore, if we could compute most output probabilities of these "truncated Taylor"
relaxations of random circuits, then we could compute a worst-case probability.

Theorem 1 (Simplified) It is #P-hard to compute | 〈0|C′|0〉|
2

with probability 8/9 over the choice of C′,
where C′ is drawn from any one of a family of discretizations of the Haar measure.

These truncated circuit probabilities are slightly different from the average-case circuit probabilities but
are exponentially close to them (even in relative terms). However, they are essentially the same from the
perspective of supremacy arguments because quantum supremacy requires that computing most output
probabilities even approximately remains #P-hard, and our perturbations to the random circuits fall within
this approximation window. Therefore we have established a form of worst-to average-case reduction which
is necessary, but not sufficient, for the supremacy condition to remain true. This is directly analogous to the
case of permanents, where we know that computing average-case permanents exactly is #P-hard, but we do
not know this reduction is sufficiently robust to achieve quantum supremacy.

RCS does satisfy an additional robustness property known as “anti-concentration”. Anti-concentration
states that the output distribution of a random quantum circuit is “spread out” – that most output proba-
bilities are reasonably large. Therefore, any approximation errors in estimating these probabilities are small
relative to the size of the probability being computed. Once one has established a worst-to-average-case
reduction, anti-concentration implies that there is some hope for making this reduction robust to noise –
intuitively it says that the signal is large compared to the noise.

Of the numerous quantum supremacy proposals to date which are robust to noise [AA11, FU16, BMS16,
BIS+16, AC17, BMS17, Mor17, HBVSE17, BFK17, MB17], only two have known worst-to-average-case re-
ductions: BosonSampling and FourierSampling [AA11, FU16]. However, it remains open if these proposals
also anti-concentrate. On the other hand, many supremacy proposals have known anti-concentration theo-
rems (see e.g., [BMS16, BIS+16, BMS17, Mor17, HBVSE17, BFK17, MB17]), but lack worst-to-average-case
reductions. We note, however, that anti-concentration is arguably less important than worst-to-average case
reductions, as the latter is necessary for quantum supremacy arguments, while the former is not expected to
be necessary. In the case of RCS, anti-concentration follows from prior work [BH13, HBVSE17]. Therefore,
our work is the first to show that both can be achieved simultaneously.

3 Our results: statistical verification of Random Circuit Sampling

We now turn to verifying that an experimental realization of Random Circuit Sampling has performed RCS
faithfully. Verification turns out to be quite challenging. The first difficulty is that computing individual
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Proposal
Worst-case Average-case

Anti-concentration
Imminent

hardness hardness experiment

BosonSampling [AA11] X X

FourierSampling [FU16] X X

IQP [BJS10, BMS16, BMS17] X X

RCS [BH13, BIS+16, BSN17, NRK+17, HBVSE17] X X X X

Figure 1: The leading quantum supremacy proposals.

output probabilities of an ideal quantum circuit requires exponential classical time. However, current pro-
posals leverage the fact that n = 50 is small enough that it is feasible to perform this task on a classical
supercomputer. The second difficulty is that one can only take a small number of samples from the exper-
imental quantum device. This means there is no hope of experimentally observing all 250 outcomes, nor of
estimating their probabilities empirically3. The challenge is therefore to develop a statistical measure which
respects these limitations, and nevertheless verifies quantum supremacy.

The leading statistical measure proposed for verification is the “cross-entropy” [BIS+16, BSN17, NRK+17],
which is defined as

∑

x

pUdev(x) log

(

1

pUid(x)

)

where pUdev(x) is the probability the experimental device outputs x, and pUid(x) is the probability the ideal
device outputs x. This measure is specifically designed so that one can estimate it by taking a few samples
x1, x2, . . . , xk from the device, and computing the average value of log

(

1/pUid(xi)
)

using a classical supercom-
puter.

Ideally, we would like to connect the cross-entropy measure to the rigorous complexity-theoretic argu-
ments in favor of quantum supremacy developed in Section 2. Invoking these hardness results as currently
formulated requires the output distribution of the experimental quantum device to be close in total variation
distance to the ideal.

Unfortunately, without strong assumptions as to how the quantum device operates, cross-entropy does
not certify closeness in total variation distance – in fact we give a counterexample distribution that achieves
a nearly perfect cross-entropy score and yet is arbitrarily far from ideal in total variation distance.

Another attempt at obtaining quantum supremacy from RCS is to make use of certain verifiable properties
of the resulting ideal outcome distributions. Most notably, the Porter-Thomas “shape” of the RCS outcome
distribution – i.e., how many output strings x have their output probability p(x) in a certain range – has
been suggested as a “signature” of quantum effects [BIS+16]. We give an example of a naturally arising
classical process that resembles the physics of a noisy/decoherent quantum system and yet has an outcome
distribution that approximates Porter-Thomas.

Consequently, any supremacy proposal based on outcome statistics cannot be based solely on shape. It
must directly incorporate the relationship between specific outcome strings and their probabilities. Cross-
entropy does take this into account because it requires computing the ideal output probabilities of the
observed samples. It has been suggested that it may be intrinsically difficult to achieve high cross-entropy
[BSN17], but this is thus far not supported by any complexity-theoretic evidence. Another recent proposal of
Aaronson and Chen called Heavy Output Generation (or HOG) identifies a particularly simple relationship
between output strings and their probabilities as a possible avenue to supremacy [AC17]. Viewed from the
correct perspective, cross-entropy and HOG are more similar than they appear at first sight. While HOG
can be tied to a hardness conjecture called QAUTH, a major challenge is to connect this with a standard,
well-believed conjecture such as the non-collapse of the PH. Directly linking verification to computational
complexity remains open for all supremacy proposals to date, including BosonSampling.

3Nor of performing complete tomography, at this would both require a large number of measurements, and moreover would
require one to trust the very quantum operations one is seeking to verify.
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A Worst-to-average-case reduction

Our main result is to give the first worst-to-average-case reduction for computing the output probabilities of
random quantum circuits. We will now describe why this result is critical to establishing quantum supremacy
from Random Circuit Sampling (RCS).

Let us first define what we mean by RCS. Random Circuit Sampling is the process of picking a random
(efficient) quantum circuit and then sampling from its output distribution. Formally, an architecture A is a
collection of graphs, one for each integer n. Each graph consists of m ≤ poly(n) vertices where each vertex
v has degin(v) = degout(v) ∈ {1, 2}. A circuit C acting on n qubits over A is instantiated by taking the
n-th graph and specifying a gate for each vertex in the graph that acts on the qubits labelled by the edges
adjacent to that vertex. That is, we can think of an architecture as an outline of a quantum circuit (one for
each size n), and one needs to fill in the blanks (specify each gate) to instantiate a circuit.

We will consider the distribution on circuits where each gate is drawn uniformly at random. Here
“uniformly at random” means according to the Haar measure, i.e. the unique measure on unitary matrices
that is invariant under (left or right) multiplication by any unitary.

Definition 2 (Haar random circuit distribution) Let A be an architecture over circuits and let the
gates in the architecture be {Gi}i=1,...,m. Define the distribution HA (or H when A is clear from context)
over circuits in A by drawing each gate Gi independently from the Haar measure.

Random Circuit Sampling is then defined as follows:
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Definition 3 (Random Circuit Sampling) Random Circuit Sampling over a fixed architecture A is the
following task: given a description of a random circuit C from HA, and a description of an error parameter
ǫ > 0, sample from the probability distribution induced by C (i.e., draw y ∈ {0, 1}n with probability Pr(y) =

| 〈y|C|0n〉|
2
) up to total variation distance ǫ in time poly(n, 1/ǫ).

While RCS is defined relative to an architecture A, the exact choice of A will not matter for our main
result, so we will often suppress this dependence in the next several sections. We will discuss the architectures
proposed for quantum supremacy in detail in Appendix A.5. Also, note that this definition is designed to
allow for a small amount of error in the classical sampler. This is to capture the fact that real-world quantum
devices will be unable to perform this task exactly due to noise - and hence this definition allows the classical
device the same error tolerance we allow the quantum device. As usual total variation distance means one
half of the ℓ1 distance between the probability distributions.

The goal of our work is to argue that RCS is difficult for classical computers. The crux of this argument
lies in the relative difference in the difficulty of estimating the output probabilities of classical vs quantum
circuits. It is well known that certain output probabilities of quantum circuits are very difficult to compute
– in fact, they can be #P-hard to approximate, which is truly intractable. In contrast, it is much easier to
approximate the output probabilities of classical circuits [Sto85], under an assumption known as the non-
collapse of the polynomial hierarchy. This result alone is enough to establish the difficulty of exactly sampling
from the probability distribution output by the quantum device (i.e. in the case ǫ = 0) [BJS10, AA11].

However, to make this argument robust to experimental noise, we need the hardness of computing output
probabilities to be “more spread out” in the output distribution, rather than concentrated in a single output
which could be corrupted by noise. This was precisely the insight of Aaronson and Arkhipov [AA11]. They
showed that BosonSampling cannot be classically simulated under the following conjecture:

Conjecture 4 ([AA11], Informal) Approximating most output probabilities of most linear optical net-
works is #P-hard.

While they did not prove this conjecture, they were able to prove the following necessary worst-to-average-
case reduction:

Theorem 5 ([AA11], Informal) Exactly computing most output probabilities of most linear optical net-
works is #P-hard.

Our Theorem 1 establishes the analogue of Theorem 5 for Random Circuit Sampling. Just as for Aaronson
and Arkhipov, this theorem will give necessary evidence in support of our main hardness conjecture:

Conjecture 6 (Informal) There exists an architecture A so that approximating |〈y|C |0n〉|
2

for most out-
comes y ∈ {0, 1}n and C drawn from HA is #P-hard.

Furthermore, prior work has shown that Random Circuit Sampling has additional property known as
anti-concentration [BH13, HBVSE17], which has not been proven for BosonSampling or FourierSampling.
Anti-concentration can be seen as evidence that an average-case hardness result could be made robust to
noise. We will discuss how known anti-concentration results can be integrated into our hardness proof in
Appendix A.5.

A.1 Our average-case reduction

Our first result gives evidence that approximating average-case output probabilities of random quantum
circuits remains difficult. It is well known that computing output probabilities of worst-case quantum
circuits is #P-hard. Our goal is, therefore, to establish that computing output probabilities of average-case
random quantum circuits is just as difficult. We achieve this by giving a worst-to-average-case reduction for
computing output probabilities of random quantum circuits. That is, we show that if one could compute
average-case quantum circuit probabilities, then one could infer the value of worst-case quantum circuit
probabilities. Therefore, computing average-case probabilities is also #P-hard.
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Establishing average-case hardness is surprisingly subtle. It will be useful to first recall the worst-to-
average-case reduction for the permanent of matrices over the finite field Fq [Lip91], where q is taken to
be a sufficiently large polynomial in the input parameter. In the case of permanents, the structure which
connects the values of random permanents is low-degree polynomials. The permanent of an n× n matrix,

perm(A) =
∑

σ∈Sn

n
∏

i=1

Ai,σ(i)

is a polynomial of degree n in the n2 matrix entries. Let X be a random n×n matrix over Fq, where q ≥ n+2.
Moreover, suppose our goal is compute the permanent of a worst-case matrix Y . We first consider the line
A(t) = Xt + Y ; note that for t 6= 0, A(t) is uniformly distributed over F

n×n
q . If we are able to calculate

perm(R) with probability ≥ 1 − 1
3(n+1) over R ∼U F

n×n
q , then by the union bound, we could compute A(t)

correctly at n+1 different values of t with bounded error probability. This is possible because the union bound
holds despite A(t) being correlated with one another – it only requires that the marginal distribution on each
one is uniform. So standard polynomial interpolation techniques on {(tj , perm(A(tj))}j=1,...,n+1 allow us to
learn the function perm(A(t)) and therefore, perm(Y ) = perm(A(0)). With more rigorous analysis – but the
same intuition – one can argue that we only need to be calculate perm(R) with probability 3/4 + 1/poly(n)
[WB86, GLR+91]4.

Therefore, polynomial interpolation allows us to compute permanents of every matrix ∈ F
n×n
q if we can

compute the permanent on most matrices. A “random survey” of permanent values can be used to infer the
value of all permanents. Combined with the fact that the permanent problem is worst-case #P-hard [Val79],
this implies that computing permanents in F

n×n
q on average is #P-hard. Formally, the following result was

obtained.

Theorem 7 (Average-case hardness for permanents [Lip91, GLR+91]) The following is #P-hard:
For sufficiently large q, given a uniformly random matrix M ∈ F

n×n
q , output perm(M) with probability

≥ 3
4 + 1

poly(n) .

To establish worst-to-average-case reductions for random circuits, we need to find a similar structural
relation between our worst-case circuit, whose output probability we wish to compute, and average-case
circuits in which each gate is chosen randomly. A first observation is that there is indeed a low-degree
polynomial structure – stemming from the Feynman path-integral – which allows us to write the probability
of any outcome as a low-degree polynomial in the gate entries. This polynomial is fixed once we fix both
the outcome and the architecture of the circuit, and the degree is twice the number of gates in the circuit5,
which is a polynomial in the input parameter.

Fact 8 (Feynman path integral) Let C = CmCm−1 . . . C2C1, be a circuit formed by individual gates Ci

acting on n qubits. Then

〈ym|C |y0〉 =
∑

y1,y2,...,ym−1∈{0,1}n

m
∏

j=1

〈yj|Cj |yj−1〉 .

There are two subtleties we need to address. The first is that the value of this polynomial is the probability

of a fixed output ym. Our analysis will therefore focus on the hardness of estimating the p0(C)
def

= |〈0n|C|0n〉|2

probability for C drawn from HA, rather than the hardness of approximating the probability of a random
ym. These can be proven equivalent using the “hiding” property of the HA distribution: we can take a
circuit drawn from this distribution, append Pauli X gates to a uniformly chosen subset of output qubits,
and remain distributed via HA. We discuss hiding in more detail in Appendix A.4.

4Additional improvements have been made to reduce to the probability to 1/poly(n) [Sud96, CPS99].
5The factor of 2 accounts for the Born rule for output probabilities.
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The second subtlety is that this is a polynomial over the complex numbers, instead of Fq. Bridging this
gap requires considerable technical work6. Indeed, in proving the reduction for permanents of matrices over
finite fields, we leveraged the fact that A(t) = Xt+ Y will be randomly distributed across F

n×n
q since X is

uniformly random and Y is fixed. To leverage a similar property for random circuit sampling, we need, given
a worst-case circuit C, a polynomial C(t) over circuits such that (1) C(0) = C and (2) C(t) is distributed
like a Haar random circuit. To be more precise, for a fixed architecture A, we will we hope to say that the
p0(C) probability for a circuit C ∈ A drawn from HA is hard to compute on average.

A naïve approach to doing this is to copy the proof for the permanent. If we could perturb each gate in
a random linear direction, then we could use polynomial interpolation to perform the worst-to-average-case
reduction as above. That is, consider taking a worst-case circuit A and adding a random circuit B (gate by
gate) to obtain A + tB. It is true that p0(A + tB) is a low-degree polynomial in t, so one might hope to
use interpolation to compute the worst-case value at t = 0. Unfortunately, this idea does not work because
quantum gates do not have a linear structure. In other words, if A and B are unitary matrices, then A+ tB
is not necessarily unitary – and hence A + tB are not necessarily valid quantum circuits. So this naïve
interpolation strategy will not work.

We consider a different way of perturbing circuits. Suppose that we take a worst-case circuit C =
Cm, . . . , C1, and multiply each gate Cj by an independent Haar random matrix Hj . That is, we replace
each gate Cj with CjHj . By the left-invariance of the Haar measure, this is equivalent to selecting each gate
uniformly at random. Now suppose we “rotate back” by tiny amount back towards Cj by some small angle
θ. More specifically, replace each gate Cj of the circuit with CjHje

−ihjθ where hj = −i logHj . If θ = 1
this gives us back the worst-case circuit C, but if θ is very tiny this looks almost Haar random. One might
hope that by collecting the values of many probabilities at small angles θ, one could interpolate back to the
worst-case point C of interest. Therefore, a second attempt would be to take a (possibly worst-case) circuit
C, scramble it by multiplying it gate-wise by a perturbed Haar distribution defined below, and then use some
form of interpolation in θ to recover the probability for C at θ = 1.

Definition 9 (θ-perturbed Haar-distribution) Let A be an architecture over circuits, θ a constant ∈
[0, 1], and let Gm, . . . , G1 be the gate entries in the architecture. Define the distribution HA,θ (or Hθ when A
is clear from context) over circuits in A by setting each gate entry Gj = Hje

−ihjθ where Hj is an independent
Haar random unitary and hj = −i logHj.

Unfortunately, this trick is not sufficient to enable the reduction. The problem is that e−iθhj is not a
low-degree polynomial in θ, so we have no structure to apply polynomial interpolation onto. While there is
structure, we cannot harness it for interpolation using currently known techniques. Although this doesn’t
work, this trick has allowed us to make some progress. A promising property of this method of scrambling
is that it produces circuits which are close to randomly distributed – which we will later prove rigorously.
This is analogous to the fact that A + tB is randomly distributed in the permanent case, a key property
used in that proof. We merely need to find some additional polynomial structure here in order to utilize this
property.

We find this polynomial structure by considering Taylor approximations of e−ihjθ in place of e−ihjθ in
the above construction. The values of the probabilities in this truncation will be very close to those of the
proposal above – and yet by construction we have ensured our output probabilities are low degree polynomials
in θ. Formally, we define a new distribution over circuits with this property:

Definition 10 ((θ,K)-truncated perturbed Haar-distribution) Let A be an architecture over circuits,
θ a constant ∈ [0, 1], K an integer, and let Gm, . . . , G1 be the gate entries in the architecture. Define the
distribution HA,θ,K (or Hθ,K when A is clear from context) over circuits in A by setting each gate entry

Gj = Hj

(

K
∑

k=0

(−ihjθ)
k

k!

)

6We note that Aaronson and Arkhipov have given a worst-to-average-case reduction for computing the permanent with
complex Gaussian entries [AA11]. However, our reduction will be quite different, due to structural differences between quantum
circuit amplitudes and permanents.
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where Hi is an independent Haar random unitary and hj = −i logHj.

Now suppose we take our circuit C of interest and multiply each gate in it by Hθ,K to “scramble” it.
This is precisely how a computer would sample from C · Hθ as one cannot exactly represent a continuous
quantity digitally. Suppose we could compute the probabilities of these circuits for many choices of θ with
high probability. Now one can use similar polynomial interpolation ideas to show hardness of this task.

To state this formally, let us define some notation. For a circuit C and D a distribution over circuits of
the same architecture, let C · D be the distribution over circuits generated by sampling a circuit C′ ∼ D
and outputting the circuit C ·C′ where multiplication is defined gate-wise. Explicitly, we show the following
worst-to-average-case reduction, which we prove in Appendix A.3:

Theorem 1 Let A be an architecture so that computing p0(C) to within additive precision 2−poly(n), for any
C over A is #P-hard in the worst case. Then it is #P-hard to compute 8/9 of the probabilities p0(C

′) over

the choice of C′ from the distributions D′
C

def

= C · Hθ,K where θ = 1/poly(n), K = poly(n).

A.2 Theorem 1 is necessary for Conjecture 6

To reflect on our result, Theorem 1 shows that a worst-to-average-case reduction is indeed possible with
respect to a distribution over circuits that is close to the Haar distribution we desire. Of course, a skeptic
could claim that such a result is only superficially related to our eventual goal, proving Conjecture 6. Our
next result is aimed precisely at such a skeptic: we show that the hardness result established in Theorem 1
will be necessary to prove Conjecture 6.

Let us start by choosing some convenient notation. For the purposes of this section, let us fix an
architecture A as well as parameters θ = 1

poly(n) , and K = poly(n). Then, with respect to a fixed circuit

C over this architecture, we denote the distribution C · Hθ as DC (i.e., the corresponding θ−perturbed
Haar-distribution), and C · Hθ,K will be denoted D′

C (i.e., the corresponding (θ,K)−truncated perturbed
Haar-distribution). We also define the joint distribution of DC and D′

C , which we denote by JC . This is the
distribution over pairs of circuits (C1, C2) generated by choosing independent Haar random gates {Hj}j=1...m

and using this choice to publish C1 from DC and C2 from D′
C , using the same choice of {Hj}. Then, the

marginal of JC on C1 is DC and on C2 is D′
C but they are correlated due to the same choice of {Hj}. For

simplicity of notation, we will often suppress the argument C and simply write D,D′,J .
Now we will show how to use the existence of an algorithm for computing probabilities of most circuits

with respect to the truncated perturbed Haar-distribution to estimate probabilities of most circuits drawn
from the Haar-random circuit distribution. We introduce one more helpful definition for these results,
namely:

Definition 11 We say an algorithm O (δ, ǫ)-computes a quantity p(x) with respect to a distribution F over
inputs if:

Pr
x∼F

[p(x)− ǫ ≤ O(x) ≤ p(x) + ǫ] ≥ 1− δ.

In other words, the algorithm computes an estimate to the desired quantity with high-probability over
instances drawn from F . In these terms, the main result of this section will be:

Theorem 12 Suppose there exists an efficient algorithm O that for architecture A, (ǫ, δ)-computes the
p0(C

′) probability with respect to circuits C′ drawn from D′, then there exists an efficient algorithm O′ that
(ǫ′, δ′)-computes the p0(C

′) probability with respect to circuits C′ drawn from H, with ǫ′ = ǫ+ 1/exp(n) and
δ′ = δ + 1/poly(n).

From this, one has the following immediate corollary:

Corollary 13 Conjecture 6 implies Theorem 1.
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Proof: If there is an algorithm exactly computing probabilities over D′, then there is an algorithm ap-
proximately computing probabilities over H. Therefore, if approximately computing probabilities over H is
#P-hard, then exactly computing probabilities over D′ is #P-hard as well. �

In other words, our main result is necessary for the quantum supremacy conjecture (Conjecture 6) to be
true.

We start proving Theorem 12 by establishing two facts which relate the distributions of circuits drawn
from the joint distribution J . A natural interpretation of Facts 14 and 15 is as statements about the
proximity of output probabilities and input distributions, respectively. Fact 14 states that the output
probabilities of circuits drawn from the joint distribution J are effectively the same. Fact 15 states the
perturbed distribution is essentially Haar – therefore, choosing the inputs from the Haar distribution or the
perturbed Haar distribution is immaterial.

Fact 14 Let A be an architecture over circuits and C a circuit in the architecture. Let (C1, C2) be circuits
drawn from J . Then the zero probabilities of C1 and C2 are close; namely,

|p0(C1)− p0(C2)| ≤ 2−poly(n).

Proof: By expanding the exponential as a Taylor series, we can express each gate C1,j and C2,j of C1 and
C2, respectively, as

C1,j = CjHj

(

∞
∑

k=0

(−ihjθ)
k

k!

)

; C2,j = CjHj

(

K
∑

k=0

(−ihjθ)
k

k!

)

.

Therefore, C1,j − C2,j = CjHj

(

∑∞
k=K+1

(−ihjθ)
k

k!

)

. We can apply the standard bound on Taylor series to

bound | 〈yj |C1,j − C2,j |yj−1〉| ≤
κ
K! for some constant κ. Applying this to a Feynman path integral,

| 〈0|C1|0〉 − 〈0|C2|0〉| ≤
∑

y1,...,ym

∣

∣

∣

∣

∣

∣

m
∏

j=1

〈yj |C1,j |yj−1〉 −

m
∏

j=1

〈yj |C2,j |yj−1〉

∣

∣

∣

∣

∣

∣

≤ 2n(m−1) · O
(mκ

K!

)

=
2O(nm)

(K!)m
.

This proves that the amplitudes are close. As the amplitudes have norm at most 1, then the probabilities
are at least as close. The result follows by a sufficiently large choice of K = poly(n). �

Fact 15 Let A be an architecture on circuits with m gates and C ∈ A a circuit from that architecture. Then
the distribution H and D are O(1/poly(n)) close in total variation distance.

Proof:
To prove this, we will show that for any particular gate of the circuit, the distributions induced by H and

D are O(θ) close in total variation distance. Then the additivity of total variation distance for independent
events implies that the distributions are O(mθ)-close (i.e. if D and D′ are ǫ-close in total variation distance,
then n independent copies of D are nǫ-close to n independent copies of D′). The result then follows from a
suitably small choice of θ = 1/poly(n).

Now consider the distributions H and D on a single two-qubit gate. Since the Haar measure is left-
invariant, the distance between these is equivalent to the distance between C · H and D = C · Hθ. Since
total variation distance is invariant under left multiplication by a unitary, this is equivalent to the distance
between H and Hθ.

Intuitively, the reason these are O(θ) close is as follows: consider a random rotation in SO(3), vs. a
random rotation in SO(3) which has been “pulled back” towards the identity. By construction, the axes
of rotations will be uniformly random over the sphere in both distributions. The only difference between
the distributions lies in their angles of rotation – the former’s angle of rotation is uniform in [0, 2π] while
the latter’s is uniform in [0, 2π(1− θ)]. These distributions over angles are clearly θ-close in total variation
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distance. This immediate implies these distributions over matrices are θ-close in total variation distance as
well since matrices are uniquely defined by the eigenbasis and eigenvalues.

We can extend this logic to the two-qubit case as well. By construction the distributions H and Hθ

will be diagonal in a uniformly random basis U (since “pulling back” a matrix A by e−iθ logA preserves the
eigenbasis). Hence the only difference between these distributions lies in their distribution over eigenvalues.
We will show their distribution over eigenvalues are O(θ) close in total variation distance, which will imply
the claim. In particular, the distribution of eigenvalues eiθ1 , eiθ2 , eiθ3 , eiθ4 of a two qubit gate drawn from H
is given by the density function, due to Weyl (e.g. [DS94]),

Pr
[

θi = θ̂i

]

∝
∏

i6=j

∣

∣

∣
eiθ̂i − eiθ̂j

∣

∣

∣

2

.

In contrast the distribution over eigenvalues of a two-qubit gate drawn from Hθ is

Pr
[

θi = θ̂i

]

∝











0 ∃i : θ̂i ≥ 2π(1− θ)
∏

i6=j

∣

∣

∣
eiθ̂i − eiθ̂j

∣

∣

∣

2

o.w.

One can easily compute that the total variation distance between these measures is O(θ), which implies the
claim. This simply uses the fact that the above density function is smooth and Lipschitz, so a version of the
same density function which has been “shifted” by θ is O(θ) close in total variation distance. �

Armed with these facts we are now ready to prove Theorem 12. We divide the proof into two steps,
encapsulated into two lemmas (Lemmas 16, 17). In the first, we show how to use an algorithm that works on
average over circuits drawn from D′ to get an algorithm that works on average over pairs of circuits drawn
from H and D.

Lemma 16 Suppose there exists an algorithm O that for any circuit C from a fixed architecture A takes as
input a circuit C2 sampled from D′ and (ǫ, δ)-computes the p0(C2) probability. Then there exists an algorithm
O′ that receives as input a Haar random circuit C as well as a sample C1 from D and (ǫ′, δ)-computes the
p0(C1) probability, where ǫ′ = ǫ+ 1/ exp(n).

Proof: This lemma is primarily a consequence of Fact 14. Our objective in the proof will be to develop an
algorithm O′ that, given a circuit C1 from the perturbed Haar-distribution infers the corresponding circuit
C2 from the truncated perturbed Haar-distribution. Once it does this, it simply returns the output of O run
on input C2.

More formally, consider an algorithm O′ that is given as input C, as well as a pair of circuits (C1, C2) ∼ J ,
where J is the joint distribution with respect to C. Then O′ runs O on input C2. Clearly, from Fact 14, the
output probabilities of C1 and C2 are exponentially close, so we can see that O′ (ǫ+ 1/ exp(n), δ)-computes
the quantity p0(C1).

Now by averaging over C, we see that in fact O′ (ǫ + 1/ exp(n), δ)-computes p0(C1) with respect to
a distribution over triplets of circuits (C,C1, C2) in which C is Haar random and the pair (C1, C2) is dis-
tributed via the corresponding joint distribution J . Next notice that instead of receiving the triplet of inputs
(C,C1, C2), O

′ could simply have received a Haar random circuit C and a circuit C1 drawn from D. This is
because it can infer7 the truncated circuit C2 directly from C and C1. The Lemma follows. �

Next, we show how to use this new algorithm O′ that works on average over pairs of circuits drawn from
H and D to get an algorithm O′′ that works on average over circuits drawn from H.

Lemma 17 Suppose there exists an algorithm O′ that takes as input a Haar random circuit C from a fixed
architecture A as well as a circuit C1 drawn from D, and (ǫ, δ)-computes the p0(C1) probability. Then there

7This is simply because one can left-multiply C1 by C† to obtain the element drawn from Hθ. As θ is fixed beforehand, the
algorithm can then deduce the corresponding element drawn from H with probability 1 by simply diagonalizing and stretching
the eigenvalues by 1/(1 − θ). It can then compute the truncated Taylor series to obtain C2.
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exists an algorithm O′ that (ǫ, δ′)-computes the p0(C) probability with respect to input circuits C drawn from
H, with δ′ = δ + 1/poly(n).

Proof: This lemma is a direct consequence of Fact 15. In particular, Fact 15 implies that the input
distribution to the algorithm O′, in which the first input circuit is Haar random and the second is drawn
from D, is 1/poly(n)-close in total variation distance to the distribution over pairs of independently drawn
Haar random circuits which we refer to as H(2).

Note total variation distance can be interpreted as the supremum over events of the difference in proba-
bilities of those events. Considering the event that O′ is approximately correct in its computation of p0(C1),
this means if O′ is run on inputs from the distribution H(2) instead of from C ∼ H and C1 ∼ D, it will
still be correct with high probability. So O′ will (ǫ, δ + 1/poly(n))-compute p0(C1) with respect to this new
distribution H(2). Now these two input circuits are independently drawn, and so O′ can discard the unused
input circuit. We arrive at our Lemma. �

The results from Lemmas 16 and 17 together prove Theorem 12.

A.3 Proof of Theorem 1

Theorem 1 Let A be an architecture so that computing p0(C) to within additive precision 2−poly(n), for any
C over A is #P-hard in the worst case. Then it is #P-hard to compute 8/9 of the probabilities p0(C

′) over

the choice of C′ from the distributions D′
C

def

= C · Hθ,K where θ = 1/poly(n), K = poly(n).

The proof of Theorem 1 follows by demonstrating the inherent polynomial structure of the problem and
leveraging the structure via polynomial interpolation to equate average-case and worst-case hardness.

Proof: Let {Hj} be a collection of independent Haar random gates and define

H ′
j(θ) = Hj

K
∑

k=0

(−ihjθ)
k

k!

where hj = −i logHj . Define the circuit C′(θ) as C ·H ′(θ). Let q(θ) = p0(C
′(θ)).

Notice that for a fixed choice of {Hj}, q(θ) is a low-degree polynomial in θ. By a Feynman path integral
(Fact 8),

〈ym|C′(θ)|y0〉 =
∑

y1,...,ym∈{0,...,d−1}n

m
∏

j=1

〈yj |[C
′(θ)]j |yj−1〉

is a polynomial of degree mK as each term 〈yj |[C1(θ)]j |yj−1〉 is a polynomial of degree K. Therefore, q is a
polynomial of degree 2mK. Now assume that there exists a machine O such that O can compute p0(C

′) for
8/9 of C′ where C′ is drawn from the distribution in the theorem statement. A simple counting argument
shows that for at least 2/3 of the choices of {Hj}, O correctly computes p0(C

′(θ)) for at least 2/3 of θ. Call
such a choice of {Hj} good.

Consider a machine O′ with fixed θ1, . . . , θk ∈ [0, 1
poly(n) ) that queries O(θℓ) for ℓ = 1, . . . , k. Then O′

applies the Berlekamp-Welch Algorithm [WB86] to compute a degree 2mK polynomial q̃ from the points
{(θℓ,O(θℓ))}ℓ=1,...,k and returns the output q̃(1).

Theorem 18 (Berlekamp-Welch Algorithm [WB86]) Let q be a degree d univariate polynomial over
any field F. Suppose we are given k pairs of F elements {(xi, yi)}i=1,...,k with all xi distinct with the promise
that yi = q(xi) for at least min(d + 1, (k + d)/2) points. Then, one can recover q exactly in poly(k, d)
deterministic time.

We remark that if we choose k = 100mK, then for a good {Hj} with high probability (by a Markov’s
inequality argument), the polynomial q̃ = q. Therefore, q̃(1) = q(1) = p0(C

′(1)). Since at least 2/3 of
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θ

p(θ)

Figure 2: Example of a true function p0(C) (dotted), inherent polynomial q(θ) = p0(C
′(θ)) (solid), and

potentially noisy samples {(θℓ,O(θℓ))}.

{Hj} are good, by repeating this procedure O(1) times and applying a majority argument, we can compute
p0(C

′(1)) exactly. It only remains to show that p0(C
′(1)) is a 2−poly(n) additive approximation to p0(C), a

#P-hard quantity.
We can apply Fact 14 to argue that |p0(C

′(1))− p0(C)| is at most 2O(nm)/((K)!)m. As we choose
K = poly(n), this is at most 2−poly(n) for every desired polynomial. �

A.4 Sampling implies average-case approximations in the polynomial hierarchy

In this section, we explain why Conjecture 6 implies quantum supremacy for RCS. In particular, we show
that such an efficient classical algorithm for RCS would have surprising complexity consequences. This
section will be very similar to analogous results in earlier work (see e.g., [AA11, FU16, BMS16]).

That is, we show that the following algorithm which we call an approximate sampler, is unlikely to exist:

Definition 19 (Approximate sampler) An approximate sampler is a classical probabilistic polynomial-
time algorithm that takes as input a description of a quantum circuit C, as well as a parameter ǫ (specified
in unary) and outputs a sample from a distribution D′

C such that

||DC −D′
C || ≤ ǫ

where DC is the outcome distribution of the circuit C and the norm is total variation distance.

Our main result will connect the existence of an approximate sampler to an algorithm which will estimate
the probabilities of most Haar random circuits, in the following sense:

Definition 20 (Average-case approximate solution) A polynomial-time algorithm O is an average-
case approximate solution to a quantity p(x) with respect to an input distribution D if:

Pr
x∼D

[∣

∣

∣
O(11/ǫ, 11/δ, x)− p(x)

∣

∣

∣
≤

ǫ

2n

]

≥ 1− δ.

In other words, an average-case approximate solution outputs a good estimate to the desired quantity for
most random inputs but might fail to produce any such estimate for the remaining inputs.

More formally, the main theorem of this section, Theorem 22, proves that the existence of an approximate
sampler implies the existence of an average-case approximate solution for computing the p0(C) probability
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of a random circuit C drawn from the Haar distribution. This average-case approximate solution will run
in probabilistic polynomial time with access to an NP oracle. The main theoretical challenge in quantum
supremacy is to give evidence that such an algorithm does not exist. This would certainly be the case if
the problem was #P-hard, or as hard as counting the number of solutions to a boolean formula. Such a
conjecture lies at the heart of all current supremacy proposals. More formally, this conjecture is:

Conjecture 6 There exists a fixed architecture A so that computing an average-case approximate solution
to p0(C) with respect to HA is #P-hard.

We now show how Conjecture 6 would rule out a classical approximate sampler for RCS, under well-
believed assumptions. Specifically, assuming this conjecture is true, Theorem 22 tells us that an approximate
sampler would give an algorithm for solving a #P-hard problem in BPPNP. Now, BPPNP is known to be in
the third-level of the PH (see e.g., [Lau83]). In other words, BPPNP ⊆ Σ3. On the other hand, a famous
theorem of Toda tells us that all problems solvable in the PH can be solved with the ability to solve #P-hard
problems. That is, PH ⊆ P#P [Tod91]. Putting everything together, we have that an approximate sampler
would imply that PH ⊆ Σ3, a collapse of the PH to the third-level, a statement that is widely conjectured
to be false (e.g., [KL80, BHZ87]).

Finally, we prove Theorem 22. The proof utilizes a classic theorem by Stockmeyer [Sto85], which we
state here for convenience.

Theorem 21 (Stockmeyer [Sto85]) Given as input a function f : {0, 1}n → {0, 1}m and y ∈ {0, 1}m

there is a procedure that runs in randomized time poly(n, 1/ǫ) with access to a NPf oracle that outputs an α
such that

(1− ǫ)p ≤ α ≤ (1 + ǫ)p for p = Pr
x∼U({0,1}n)

[f(x) = y].

In the context of this work, the primary consequence of Stockmeyer’s theorem is that we can use an NP

oracle to get a multiplicative estimate to the probability of any outcome of an approximate sampler, by
counting the fraction of random strings that map to this outcome. Using this idea we prove:

Theorem 22 If there exists an approximate sampler S with respect to circuits from a fixed architecture A,

there also exists an average-case approximate solution in BPPNPS

for computing the p0(C) probability for a
random circuit C drawn from HA.

Proof: We start by proving a related statement, which says that if we can sample approximately from
the outcome distribution of any quantum circuit, we can approximate most of the output probabilities of all
circuits C. This statement, unlike the Theorem 22, is architecture-agnostic.

Lemma 23 If there exists an approximate sampler S then for any quantum circuit C, there exists an average-

case approximate solution in BPPNPS

for computing the | 〈y|C |0〉 |2 probability of a randomly chosen outcome
y ∈ {0, 1}n.

Proof: First fix parameters δ, ǫ > 0. Then for any quantum circuit C, S(C, 11/η) samples from a distribu-
tion η-close to the output distribution p of C. We denote this approximate outcome distribution by q. By

Theorem 21, there exists an algorithm O ∈ BPPNPS

such that

(1 − γ)qy ≤
∣

∣

∣
O′(C, y, 11/ǫ, 11/γ)

∣

∣

∣
≤ (1 + γ)qy.

Let q̃y = O(C, y, 11/η, 11/γ) for γ to be set later. Since q is a probability distribution, E(qy) = 2−n. By
Markov’s inequality,

Pr
y

[

qy ≥
k1
2n

]

≤
1

k1
; Pr

y

[

|qy − q̃y| ≥
γk1
2n

]

≤
1

k1
.
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Secondly, let ∆y = |py − qy|. By assumption,
∑

y ∆y = 2η so, therefore, E(∆y) = 2η/2n. Another Markov’s
inequality gives

Pr
y

[

∆y ≥
2k2η

2n

]

≤
1

k2
.

With a union bound and a triangle inequality argument,

Pr
y

[

|py − q̃y| ≥
γk1 + 2k2η

2n

]

≤
1

k1
+

1

k2

Choose k1 = k2 = 2/δ, γ = (ǫδ)/4, η = γ/2. Then,

Pr
y

[

|py − q̃y| ≥
ǫ

2n

]

≤ δ.

Therefore, for any circuit C, the algorithm O is an approximate average-case solution with respect to the
uniform distribution over outcomes, as desired. �

Now we use the shared architecture constraint in the theorem statement to enable a so-called hiding
argument. Hiding shows that if one can approximate the | 〈y|C|0〉|

2
probability for a random y ∈ {0, 1}n,

the one can also approximate p0(C) for a random C. This latter step will be crucial to our main result. In
particular, both the anti-concentration property and our proof of average-case hardness of estimating circuit
probabilities relies on considering a fixed output probability (see Appendix A.3 and A.5).

To prove this, we rely on a specific property of HA. This hiding property is that for any C ∼ HA, and
uniformly random y ∈ {0, 1}n, Cy ∼ HA where Cy is the circuit such that 〈z|Cy |0〉 = 〈z ⊕ y|C |0〉. In other
words, the distribution over circuits needs to closed under appending Pauli X gates to a random subset of
output qubits.

Lemma 23 tells us that for any circuit C, an approximate sampler gives us the ability to estimate most
output probabilities 〈y|C |0〉. If we instead restrict ourselves to Haar random circuits over the architecture
A, we can think of this same algorithm O as giving an average-case approximate solution with respect to
the distribution generated by first choosing C from the Haar distribution and then appending X gates to a
uniformly chosen subset of the output qubits, specified by a string y ∈ {0, 1}n, since 〈y|C |0〉 = 〈0|Cy |0〉.
Using the hiding property this is equivalent to an average-case approximate solution with respect to circuits
C drawn from the Haar random distribution over A, as stated in Theorem 22. �

A.5 Connecting with worst-case hardness and anti-concentration

Prior to this subsection, all of our results have been architecture agnostic– our worst-to-average case reduction
in Appendix A.3 aims to reduce the presumed worst-case hardness of computing output probabilities of
quantum circuits over a fixed architecture A to computing them on average over HA.

Of course, for these results to be relevant to quantum supremacy, we need to establish that for the
architectures A used in supremacy experiments, computing worst-case output probabilities is #P-hard. Then
our worst-to-average-case reduction shows that computing average case probabilities for these experiments
over HA is #P-hard – which is precisely what is necessary for the supremacy arguments of Appendix A.3 to
hold. In this section, we will show that this requirement on A is quite mild. In particular, we will show that
a candidate instantiation of RCS which is known to anti-concentrate – namely random quantum circuits on
a 2D grid of depth O(n) – easily satisfy this property. Therefore it is possible to have a single candidate
RCS experiment which has both average-case #P-hardness as well as anti-concentration.

Such worst-case hardness can be established via the arguments of Bremner, Jozsa and Shepherd [BJS10].
Although we will not summarize these standard arguments here, the key technical ingredient is demonstrating
that quantum computations over this fixed architecture are universal. This will imply that the power of the
corresponding complexity class supplemented with the ability to do post-selected measurements is equal
in power to PostBQP = PP by a result of Aaronson [Aar05]. That is, to show our worst-case hardness
result it suffices to show that the class of problems solvable by circuits over a fixed architecture is equal to
BQP. This can be established by standard results from measurement-based quantum computation involving
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universal resource states [RB01, RBB03, BBD+09]. Roughly speaking, these results allow us to prepare a
fixed state on a 2D grid and simulate any quantum circuit by performing a sequence of adaptive one-qubit
measurements on this state. Combining these results immediately implies that if an architecture A is capable
of generating one of these universal resource states, then A contains #P-hard instances – because one could
simply post-select the measurement outcomes such that no adaptivity is required.

To be more formal, let us define some notation. Let A ⊆ A′ if the gates in A are a subset of those in A′.
Then if a a circuit C is realizable in A, then it is also realizable in A′ - simply by setting those gates not in A
to the identity8. Consider the “brickwork” state defined by Broadbent, Fitzsimons and Kashefi [BFK09]. The
brickwork state |Ψbrick〉 is a universal resource state for measurement-based quantum computation, which
has nice properties. In particular it can be prepared by a constant-depth quantum circuit Cbrick on a 2D
grid, where gates only act on nearest-neighbor qubits. Let Abrick be the architecture of Cbrick, adding on
space for one-qubit gates on every output qubit. Then Abrick is universal for quantum computation under
post-selection by the above arguments. Therefore these prior results immediately yield the following Lemma:

Lemma 24 For any architecture A such that Abrick ⊆ A, it is #P-hard to compute worst case probabilities
in A.

Note that the condition required to invoke Lemma 24 is extremely mild. It simply says that the archi-
tecture must contain a simple constant-depth nearest-neighbor circuit on a 2D grid as a subgraph. We now
show that the mildness of this condition allow us to easily connect worst-case hardness to anti-concentration.

Let us first define anti-concentration and state why it is important in the context of quantum supremacy.
Broadly speaking, anti-concentration is a statement about the distribution of probabilities. It states that
most output probabilities are reasonably large.

Definition 25 (Anti-concentration) For a fixed architecture A, we say that RCS anti-concentrates on
A, if there exists constants κ, γ > 0 so that:

Pr
C∼HA

[

p0(C) ≥
1

κ2n

]

≥ 1− γ.

Crucially, this anti-concentration property allows us to reduce the hardness of average-case approximate
solutions (which, by definition, approximate the desired circuit probability additively) to an average-case
solution that approximates the solution multiplicatively. As such, we can at least ensure that these approxi-
mations are non-trivial, that is the signal is not lost to the noise. More formally,

Lemma 26 For a fixed architecture A for which RCS anti-concentrates, if there exists an algorithm O that
estimates p0(C) to additive error ±ǫ/2n for a 1−δ fraction of C ∼ HA, then O′ also can be used to estimate
p0(C) to multiplicative error ǫ · κ for a 1− δ − γ fraction of C ∼ HA.

Proof: A rephrasing of the additive error assumption is PrC∈H

[

|O(C)− p0(C)| > ǫ
2n

]

≤ δ. We apply a
union bound to argue that

Pr
C∈H

[|O(C) − p0(C)| > ǫκp0(C)] ≤ Pr
C∈H

[

|O(C) − p0(C)| >
ǫ

2n

]

+ Pr
C∈H

[ ǫ

2n
> ǫκp0(C)

]

≤ δ + γ.

�

Anti-concentration is known for random quantum circuits of depth O(n). It is possible to show that this
instantiation of RCS obeys the conditions of Lemma 24, and hence can exhibit both average-case hardness
and anti-concentration simultaneously. More specifically, suppose that at each step one picks a random pair
of nearest-neighbor qubits on a line, and applies a Haar random gate between those qubits, until the total
depth of the circuit is O(n). Prior work has established that such circuits are approximate quantum two-
designs, i.e. they approximate the first two moments of the Haar measure [BH13, BHH16]. This, combined

8One can also expand this definition to consider a one-qubit gate to be a subset of a two-qubit gate - as one can always set
the two-qubit gate to be the identity tensor a one qubit gate.
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with the fact that unitary two-designs are known to anti-concentrate (which was noted independently in
multiple works [HBVSE17, BFK17, MB17]), implies that random circuits of depth O(n) anti-concentrate.
These results immediately generalize to random circuits of depth O(n) on a 2D grid. Note one can easily
show that with probability 1−o(1/poly(n)) over the choice of a random circuit in this model, the architecture
of the circuit obeys Lemma 24. Hence, computing average-case probabilities over this random circuit model
is #P-hard9. Therefore, random circuits of depth O(n) on a 2D grid obtain both average-case hardness
and anti-concentration. We note that it is conjectured that random circuits of depth O(n1/2) on a 2D
grid anti-concentrate as well [BIS+16]. If this conjecture is true then such circuits would also exhibit both
anti-concentration and average-case hardness, as we only require constant depth to satisfy Lemma 24.

B Verification of Random Circuit Sampling

B.1 Technical preliminaries

In this section, if unspecified, a probability distribution will be over strings x ∈ {0, 1}n. The size of the
domain will be denoted N = 2n. The phrase “with high probability” will mean with probability 1− o(1).

Definition 27 Given two probability distributions D,D′, the cross-entropy, cross-entropy difference, and
total variation distance between D and D′, denoted CE(D,D′), CED(D,D′), and |D −D′|, respectively, are
given by

CE(D,D′) =
∑

x∈{0,1}n

D(x) log

(

1

D′(x)

)

,

CED(D,D′) =
∑

x∈{0,1}n

(

1

N
−D(x)

)

log

(

1

D′(x)

)

,

|D −D′| =
1

2

∑

x∈{0,1}n

|D(x) −D′(x)| .

The cross-entropy difference is simply equal to CE(U , D′) − CE(D,D′), where U is the uniform distribu-
tion. One particular probability distribution which will play an important role in this discussion is the
Porter-Thomas distribution. It approximately describes the probability distributions output by Haar ran-
dom quantum circuits (see e.g., [PT56, BIS+16]).

Definition 28 The Porter-Thomas distribution, PT , is the probability density function over [0,∞) defined
as

fPT (q) = Ne−qN .

Let |ΨU 〉 = U |0n〉 be the state obtained by applying the unitary U to the all 0’s input state. Let pU (x)
denote the probability of obtaining x upon measuring |ΨU 〉, i.e.

pU (x) = |〈x|ΨU 〉|
2 .

Then, we have that for any x the distribution of pU (x) over Haar random U is well-approximated by the
Porter-Thomas distribution. For fixed outcome x, we will call this distribution over the choice of Haar
random U , P (x).

Fact 29 (Thm. 35 of [AA11]) For any fixed outcome x and c > 0, |P (x)− PT | ≤ O(1/N c).

9Although here we are discussing average-case hardness over a random choice of architecture, this result easily follows from
our reduction for a single architecture, since w.h.p. the architecture drawn is hard on average.
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We will also be interested in the joint distribution generated by choosing a Haar random unitary U and
considering the output probabilities of k fixed outcomes x1, ..., xk. We will denote this distribution over
vectors of length k as P (x1, ..., xk). Not surprisingly, this can be approximated by k i.i.d copies of the
Porter-Thomas distribution10, PT (k). For convenience, we will define P = P (x1, x2, ..., xN ).

Although P is not close in total variation distance to PT (N) 11, the distribution P does maintain some
of the coarse-grained features of PT (N). This is because an equivalent way of sampling from P is to a
draw a vector from PT (N) and renormalize so that |v|1 = 1 [Ozo09]. By concentration of measure, this
renormalization factor will be close to 1 with very high probability. Therefore, following [BIS+16], in this
section we will often perform calculations using the heuristic of replacing P with PT (N). We will describe
why this suffices for the calculations in which it is used.

B.2 The cross-entropy supremacy proposal

Cross-entropy is a leading proposal for verifying quantum supremacy [BIS+16, BSN17, NRK+17]. For RCS
it provides a measure of the distance between the output distribution of the experimental device and the
ideal random circuit U . Estimating it requires just taking k ≪ N samples, x1, . . . , xk, from the experimental
device, followed by the computation of the empirical estimate E of the cross-entropy

E =
1

k

∑

i=1...k

log

(

1

pU (xi)

)

(1)

by using a supercomputer to calculate ideal probabilities pU (xi) for only the observed outcome strings
xi. By the law of large numbers, after sufficiently many samples12 E will converge to CE(pdev, pU ), where
pdev is the output probability of their experimental device tuned to perform U . Since CED(pdev, pU ) =
CE(U , pU ) − CE(pdev, pU ) and CED(U , pU ) is closely concentrated about its mean, logN + γ, where γ is
Euler’s constant, from this one can infer an estimate of CED(pdev, pU ). The goal of their experiment is to
achieve a value of CED(pdev, pU ) as close to the ideal expectation value as possible (with high probability). In
fact, this measure has become incredibly important to the Google/UCSB group: it is being used to calibrate
their candidate experimental device [NRK+17, Mar18].

If the experimental device were actually identical to the ideal U , then the expected value of cross-entropy
difference for Haar random U is easily estimated:

EU∼H [CED(pU , pU )] = 1± o(1).

This follows from linearity of expectation, since one only needs to compute this quantity for individual
x ∈ {0, 1}n, which approximately obey the Porter-Thomas distribution, one can compute this with a simple
integral. However, any near-term implementation of this experiment will be subject to experimental noise
and, therefore, one should not expect achieve exactly CED = 1. In fact, the Google/UCSB group expects
to obtain CED > 0.1 on their 40-50 qubit device [BIS+16]. Clearly, achieving a value of CED close to 1 is
necessary for their device to be functioning properly. Here we ask if it is sufficient as well, i.e. whether or
not achieving CED = 1± ǫ certifies that the device has achieved quantum supremacy.

B.3 Cross-entropy does not verify total variation distance

Our results from Appendix A provide evidence that it is classically hard to sample from any outcome
distribution close in total variation distance to the ideal distribution. Consequently, our goal in this section

10For instance, Aaronson and Arkhipov showed that, for k = O(N1/6), P (x1, ..., xk) is approximately PT (k), up to small
total variation distance error [AA11].

11This is because any v drawn from P will satisfy |v|1 = 1, while PT (N) will satisfy this condition with probability 0.
12An argument is made that taking ∼ 105 samples for an n = 50 qubit device suffices to obtain a good estimate of

CED(pdev , pU ) [Mar18]. Furthermore, it is argued that drawing the unitary U from an approximate 2-design instead of drawing
U Haar randomly is sufficient to argue that the ideal device obeys CED(pU , pU ) ≈ 1. We note that since log is not a low-degree
polynomial, this is not guaranteed by the fact that the distribution drawn from is an approximate 2-design. The argument is
made on the basis of numerical evidence [BIS+16].
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is to examine if achieving a sufficiently high cross-entropy difference can be used to certify that the observed
outcome distribution is close to ideal in total variation distance.

That is, we ask if for general distributions D, does achieving CED(D, pU ) = 1 − ǫ for Haar typical U
certify that |D− pU | < f(ǫ) for some function f of ǫ? This is not a priori impossible; for instance, Pinsker’s
inequality states that the square root of the KL divergence between two distributions, which is closely
related to cross entropy, is an upper bound on the total variation distance. So in some sense, we are asking
if cross-entropy behaves similarly to KL divergence in this manner.

We answer this question in the negative. Therefore, achieving high cross-entropy difference does not
allow us to conclude quantum supremacy based on the results in Appendix A.

Theorem 30 For every unitary U , there exists a distribution DU so that, with probability 1− o(1) over the
choice of U from the Haar measure, |DU − pU | ≥ 0.99, and yet CED(DU , pU ) ≥ 1 − O(1/NΘ(1)), i.e. the
cross-entropy difference is exponentially close to its ideal value.

To understand the intuition behind the counterexample, it is helpful to consider the definition of KL
divergence:

KL(D,D′) = CE(D,D′)−H(D).

A small KL divergence gives an upper bound on the total variation distance |D−D′| by Pinsker’s inequality.
If H(D) is held constant, then relatively small changes in CE(D,D′) also certify closeness in total variation
distance. But in this counterexample, we will decrease the entropy H(D) by k > 1 and, therefore, this allows
us to increase the KL divergence while keeping a similar value of cross-entropy.

Proof: (Sketch)
The basic idea is to consider a “rescaled” distribution on 1/k of the outputs for some sufficiently large

integer k. That is, we will assign probability 0 to 1− 1
k fraction of the outputs, and multiply the probabilities

on the remaining outputs by k. By construction, this has total variation distance roughly 1 − 1
k from the

ideal distribution and relatively small entropy. However, one can show it is essentially indistinguishable from
the point of cross-entropy difference – that is the cross-entropy difference is exponentially close to the ideal.

To be more precise, consider listing the strings x ∈ {0, 1}n as x1, . . . , xN in order of increasing pU (x).
Label the strings xi, i = 1 . . .N , such that i < j implies pU (xi) < pU (xj). For simplicity, we will focus
only on the “middle 99.9 percent” of the distribution, i.e. we will pick constants c1, c2 such that with high
probability over the choice of U , 99.9 percent of probability mass is on xi satisfying c1

N < pU (xi) ≤
c2
N . We

will consider values of i between imin, the smallest i such that c1
N < pU (xi), and imax, the largest i such that

pU (xi) <
c2
N .

Now consider the distribution DU defined as follows:

DU (xi) =











pU (xi) i < imin or i > imax

pU (xi) + pU (xi+1) + . . .+ pU (xi+k−1) imin ≤ i ≤ imax and i = kN

0 imin ≤ i ≤ imax and i 6= kN.

It’s not hard to show see that the total variation distance between this distribution and the ideal distri-
bution is 0.99(1− 1

k ) in expectation over the choice of U , and hence if k = 500 with high probability is more
than 0.99 by standard concentration inequalities. Furthermore, a careful but straightforward calculation
shows that the CED of this rescaled distribution DU and pU is exponentially close to 1, which is the ideal
score.

In short, the cross-entropy difference does not behave like a metric13: achieving cross-entropy difference
close to 1 does not certify closeness in total variation distance.

�

Although we have shown that cross-entropy does not generically certify total variation distance, we note
that the Google/UCSB proposal makes the assumption that their device either performs perfectly or else

13We note that one can create distributions which make the cross-entropy difference greater than 1 as well, by simply piling
more probability mass on the "heavy" elements of the distribution and less on the “light" elements of the distribution.
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Figure 3: On the left, the initial output distribution. On the right, the “rescaled” distribution.

outputs the maximally mixed state on every run of their experiment [BIS+16, BSN17]. Equivalently, there
exists an α ∈ [0, 1] such that for each outcome x ∈ {0, 1}n,

pdev(x) = αpU (x) + (1 − α)
1

N
. (2)

Once this assumption is made, achieving cross-entropy close to the ideal implies closeness to the perfect
output state in total variation distance: one can easily compute14 that achieving CED = 1 − ǫ, together
with the assumption in eq. (2) implies that EU∼H|pdev − pU | ≤

ǫ
e ≈ 0.37ǫ. This assumption is reached via

empirical evidence from their 9-qubit device [NRK+17] that errors cause their output distribution to look
closer to uniform, as well as through numerical simulations of how an ideal device should behave under a
particular noise model [BIS+16]. However, a 49 qubit device will likely be too large to verify this assumption.

B.4 “Shape” does not verify the “quantumness” of the output distribution

Since the above example rules out a strong correlation between cross-entropy and total variation distance, it
is natural to wonder if some other property of outcome distributions arising from Random Circuit Sampling
experiments could be put forward as a basis for a verifiable quantum supremacy proposal.

An often mentioned candidate property is the density of probabilities in the outcome distribution. The
suggestion is that one can verify the “quantumness” of a system simply by analyzing the “shape” of the
outcome distribution. A key property of typical distributions drawn from P is that they will have a “Porter-
Thomas shape” (recall, P is the joint distribution over all N output probabilities generated by choosing a
Haar random U). That is, if one draws a vector v ∼ P , then for any choice of constants c1 < c2 the number
of x with vx in the range [c1/N, c2/N ] will be roughly N

∫ c2
c1

e−qdq in expectation over the choice of v (i.e.

the choice of unitary U). Therefore, by concentration of measure, with high probability over the choice of v
from P , the distribution induced by choosing a random x and sampling vx is close to (a discretized version
of) Porter-Thomas. Indeed, in the Google/UCSB proposal such a “shape” is referred to as a “signature” of
quantum effects (see e.g., page 3 of [BIS+16]).

Note that since the Porter-Thomas distribution has an analytic description, there is a trivial classi-
cal algorithm for sampling from it. The more interesting question is whether any classical physical pro-
cesses can reproduce the “Porter-Thomas shape”, and how well these processes could score in cross-entropy.
We give an example of a simple classical physical process which produces probability distributions which
are approximately Porter-Thomas in shape. Furthermore, the classical process resembles the physics of a

14This follows by the linearity of the measure, and the fact the uniform distribution is 1/e-close to Porter-Thomas.
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noisy/decoherent quantum system. Consequently, the exponential nature of the Porter-Thomas distribution
is not a signature of “quantumness.”

In particular, consider a system of n + m classical bits, the first n of which we will call the “system”,
and the second m of which we will call the “environment”. Suppose that the system bits are initialized to
0, while the environment bits are chosen uniformly at random. Now suppose that one applies a uniformly
random classical permutation to these n+m bit strings (i.e. a random element σ of S2n+m) and observes the
first n system bits many times (while ignoring the environment bits) with the same choice of σ but different
settings of the environment bits. A diagram of this process is provided below in quantum circuit notation,
but note this is a purely classical process.

0n /
σ

/ ✌✌✌

I
2m

/ /

A natural question is what “shape” of probability distribution does this process produce? Over the choice of
σ, each input string on n+m bits is mapped to a uniformly random output string on n+m bits (of which
we only observe the first n bits). Therefore, this process resembles throwing 2m balls (one for each possible
setting of the environment bits) into 2n bins (one for each possible output string of the system bits). This
is not exactly the process performed because each ball is not thrown independently due to the fact that σ is
a permutation rather than a random function. However, if m is sufficiently large – say if m = n – then the
value of each string is approximately independent. This is because we are only observing the first n bits of
the output string – therefore, each bin we observe consists of 2m possible output strings. So the fact that
one string mapped to a particular observed output only very slightly decreases the probability another string
does so.

Therefore, this classical system is well approximated by the process of throwing 2m balls into 2n bins.
For simplicity, suppose we set m = n (though we do not claim this choice is optimal). It is well known that
in the large n limit, the distribution of the number of balls in each bin is close to the Poisson distribution
with mean 2m−n = 1 [MR10]. We note that this process is still approximately Poisson if σ is chosen k-wise
independently (rather than truly uniformly random) for sufficiently large k = poly(n), since the number of
bins with k balls is a kth order moment of the distribution, and in the Poisson distribution with mean 1,
almost all bins will contain < poly(n) balls with high probability.

Then this approximately produces a Poisson distribution with mean 1, i.e. the number of balls thrown
into each bin is described as:

Pr[c = k] =
1

k!e

where c is the count in a particular bin. Now to better match the parameters in the Porter-Thomas distri-
bution, we will consider normalization by the number of balls. Letting N = 2n, we see that for any output
string x,

Prx

[

pPoisson(x) =
k

N

]

=
1

k!e
.

We claim that this distribution is a natural classical imposter of Porter-Thomas. Since k! = 2Θ(k log k),
this distribution is also (approximately) exponential. So this can be seen as a discretized version of Porter-
Thomas, where the discretization resolution can be made finer by choosing larger m. Just as the Porter-
Thomas distribution approximately describes the distribution on output probabilities of a quantum system
under a random choice of U , here the Poisson distribution approximately describes the distribution on output
probabilities of this classical system under a random choice of σ. And as the Porter-Thomas distribution is
reproduced with unitary k-designs for sufficiently large k, here the Poisson statistics are reproduced when σ
is chosen from a k-wise independent family for sufficiently large k.

This shows that Random Circuit Sampling cannot be verified purely by the shape, or probability density,
of the outcome distributions. This means that any supremacy proposal based on outcome statistics must
directly incorporate the relationship between outcome strings and their probabilities. This relationship is
addressed by cross-entropy difference because in order to compute this, one must compute the ideal output
probabilities of the experimentally observed samples x.
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B.5 The relationship between cross-entropy and Heavy Output Generation

In this section, we will discuss a recent proposal of Aaronson and Chen [AC17] and how it relates to cross-
entropy.

In the Aaronson and Chen proposal, the task required of the quantum computer is relatively simple:
given a circuit description of a unitary U , output random strings x1 . . . xk such that at least 2/3 of them
or more are above-median weight in the distribution pU . In other words, most of the samples output by
the experimental device should be “heavy”. The proposal seems to directly address the relationship between
outcome strings and their probabilities. Here we restate this proposal in the language of cross-entropy to
facilitate comparison and highlight their similarity:

Definition 31 ([AC17]) A family of distributions {DU} satisfies Heavy Output Generation (HOG) iff the
following holds: Let

HOG(DU , pU ) =
∑

x∈{0,1}n

DU (x)δ(pU (x))

where δ(z) = 1 if z ≥ ln 2
N and 0 otherwise. Then the family is said to satisfy HOG if

EU∼HHOG(DU , pU ) ≥ 2/3.

The quantity ln(2)/N is chosen because it is the median of Porter-Thomas. This is empirically measured as
follows: pick a random U , obtain k samples x1, . . . , xk from the experimental device and compute

H =
1

k

∑

i=1,...,k

δ(pU (xi)). (3)

Analagous to the case of cross-entropy, only a small number of samples will be required to get a good estimate
of H by concentration of measure. Note, that the ideal device will satisfy HOG since

EU (HOG(pU , pU )) =
1 + ln 2

2
≈ 0.85.

Therefore, there is some tolerance for error in the experiment.
Notice the similarities between cross-entropy and HOG (eqs. (1) and (3)): Both are approximating the

expectation value of some function of the ideal output probabilities f(pU (xi)) over the experimental output
distribution. In the case of cross-entropy, f(x) = log(1/x). And in the case of HOG, f(x) = δ(x). Both
measures are constructed such that for small system sizes, a supercomputer can be used to verify a solution
to either measure by computing the output probabilities pU (xi).

Just as achieving a high-cross entropy score does not imply closeness to the ideal distribution in total
variation distance (Appendix B.3), achieving a high score on HOG does not imply closeness in total variation
distance either15. Both of these measures are projecting the output distribution of the experimental device
(which lives in a very high dimensional space) onto a 1-dimensional space and using this as a proxy for
supremacy. We observe that these are two distinct measures as they are capturing different one-dimensional
projections.

15An experimental device could always output the heaviest item and score well on HOG while being far in total variation
distance from ideal.
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